Alakbari Fahd Saeed, Mohyaldinn Mysara Eissa, Ayoub Mohammed Abdalla, Muhsan Ali Samer, Hussein Ibnelwaleed A
Petroleum Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak 32610, Malaysia.
Mechanical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak 32610, Malaysia.
ACS Omega. 2022 Apr 8;7(15):13196-13209. doi: 10.1021/acsomega.2c00651. eCollection 2022 Apr 19.
Bubble point pressure ( ) is essential for determining petroleum production, simulation, and reservoir characterization calculations. The can be measured from the pressure-volume-temperature (PVT) experiments. Nonetheless, the PVT measurements have limitations, such as being costly and time-consuming. Therefore, some studies used alternative methods, namely, empirical correlations and machine learning techniques, to obtain the . However, the previously published methods have restrictions like accuracy, and some use specific data to build their models. In addition, most of the previously published models have not shown the proper relationships between the features and targets to indicate the correct physical behavior. Therefore, this study develops an accurate and robust correlation to obtain the applying the Group Method of Data Handling (GMDH). The GMDH combines neural networks and statistical methods that generate relationships among the feature and target parameters. A total of 760 global datasets were used to develop the GMDH model. The GMDH model is verified using trend analysis and indicates that the GMDH model follows all input parameters' exact physical behavior. In addition, different statistical analyses were conducted to investigate the GMDH and the published models' robustness. The GMDH model follows the correct trend for four input parameters (gas solubility, gas specific gravity, oil specific gravity, and reservoir temperature). The GMDH correlation has the lowest average percent relative error, root mean square error, and standard deviation of 8.51%, 12.70, and 0.09, respectively, and the highest correlation coefficient of 0.9883 compared to published models. The different statistical analyses indicated that the GMDH is the first rank model to accurately and robustly predict the .
泡点压力( )对于确定石油产量、模拟以及油藏表征计算至关重要。泡点压力可通过压力 - 体积 - 温度(PVT)实验测量。然而,PVT测量存在局限性,比如成本高且耗时。因此,一些研究采用了替代方法,即经验关联式和机器学习技术来获取泡点压力。但是,先前发表的方法存在诸如准确性方面的限制,并且一些方法使用特定数据来构建其模型。此外,大多数先前发表的模型并未展示出特征与目标之间恰当的关系以表明正确的物理行为。因此,本研究运用数据处理分组方法(GMDH)开发了一种准确且稳健的关联式来获取泡点压力。GMDH将神经网络和统计方法相结合,生成特征参数与目标参数之间的关系。总共使用了760个全球数据集来开发GMDH模型。通过趋势分析对GMDH模型进行了验证,结果表明GMDH模型遵循所有输入参数的确切物理行为。此外,进行了不同的统计分析以研究GMDH和已发表模型的稳健性。GMDH模型对于四个输入参数(气体溶解度、气体比重、石油比重和油藏温度)遵循正确的趋势。与已发表模型相比,GMDH关联式的平均相对误差百分比、均方根误差和标准差分别为8.51%、12.70和0.09,是最低的,而相关系数最高,为0.9883。不同的统计分析表明,GMDH是准确且稳健地预测泡点压力的一流模型。