Petroleum Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, Malaysia.
Mechanical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, Malaysia.
PLoS One. 2022 Aug 11;17(8):e0272790. doi: 10.1371/journal.pone.0272790. eCollection 2022.
The bubble point pressure (Pb) could be obtained from pressure-volume-temperature (PVT) measurements; nonetheless, these measurements have drawbacks such as time, cost, and difficulties associated with conducting experiments at high-pressure-high-temperature conditions. Therefore, numerous attempts have been made using several approaches (such as regressions and machine learning) to accurately develop models for predicting the Pb. However, some previous models did not study the trend analysis to prove the correct relationships between inputs and outputs to show the proper physical behavior. Thus, this study aims to build a robust and more accurate model to predict the Pb using the adaptive neuro-fuzzy inference system (ANFIS) and trend analysis approaches for the first time. More than 700 global datasets have been used to develop and validate the model to robustly and accurately predict the Pb. The proposed ANFIS model is compared with 21 existing models using statistical error analysis such as correlation coefficient (R), standard deviation (SD), average absolute percentage relative error (AAPRE), average percentage relative error (APRE), and root mean square error (RMSE). The ANFIS model shows the proper relationships between independent and dependent parameters that indicate the correct physical behavior. The ANFIS model outperformed all 21 models with the highest R of 0.994 and the lowest AAPRE, APRE, SD, and RMSE of 6.38%, -0.99%, 0.074 psi, and 9.73 psi, respectively, as the first rank model. The second rank model has the R, AAPRE, APRE, SD, and RMSE of 0.9724, 9%, -1.58%, 0.095 psi, and 13.04 psi, respectively. It is concluded that the proposed ANFIS model is validated to follow the correct physical behavior with higher accuracy than all studied models.
泡点压力 (Pb) 可通过压力-体积-温度 (PVT) 测量获得;然而,这些测量存在时间、成本以及在高压高温条件下进行实验的困难等缺点。因此,人们已经尝试了许多方法(如回归和机器学习)来准确地开发预测 Pb 的模型。然而,以前的一些模型并没有进行趋势分析,以证明输入和输出之间的正确关系,从而展示出正确的物理行为。因此,本研究首次使用自适应神经模糊推理系统 (ANFIS) 和趋势分析方法来构建一个更稳健、更准确的模型来预测 Pb。该模型使用了超过 700 个全球数据集进行开发和验证,以稳健且准确地预测 Pb。使用统计误差分析(如相关系数 (R)、标准差 (SD)、平均绝对百分比相对误差 (AAPRE)、平均百分比相对误差 (APRE) 和均方根误差 (RMSE))比较了提出的 ANFIS 模型与 21 个现有模型。ANFIS 模型显示了独立参数和依赖参数之间的正确关系,表明了正确的物理行为。ANFIS 模型在所有 21 个模型中表现最好,具有最高的 R 值 0.994 和最低的 AAPRE、APRE、SD 和 RMSE 值分别为 6.38%、-0.99%、0.074 psi 和 9.73 psi,为第一等级模型。第二等级模型的 R、AAPRE、APRE、SD 和 RMSE 值分别为 0.9724、9%、-1.58%、0.095 psi 和 13.04 psi。可以得出结论,提出的 ANFIS 模型具有更高的准确性,通过验证能够遵循正确的物理行为,优于所有研究的模型。