School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, Wales CF10 3AT, UK.
School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, Cardiff, Wales CF10 3NB, UK.
Cell Rep Methods. 2021 Sep 16;1(6):100073. doi: 10.1016/j.crmeth.2021.100073. eCollection 2021 Oct 25.
Mammalian cell logic gates hold great potential for wide-ranging applications. However, most of those currently available are controlled by drug(-like) molecules with inherent biological activities. To construct truly orthogonal circuits and artificial regulatory pathways, biologically inert molecules are ideal molecular switches. Here, we applied genetic code expansion and engineered logic gates controlled by two biologically inert unnatural amino acids. Genetic code expansion relies on orthogonal aminoacyl-tRNA synthetase/tRNA pairs for co-translational and site-specific unnatural amino acid incorporation conventionally in response to an amber (UAG) codon. By screening 11 quadruplet-decoding pyrrolysyl tRNA variants from the literature, we found that all variants decoding CUAG or AGGA tested here are functional in mammalian cells. Using a quadruplet-decoding orthogonal pair together with an amber-decoding pair, we constructed logic gates that can be successfully controlled by two different unnatural amino acids, expanding the scope of genetic code expansion and mammalian cell logic circuits.
哺乳动物细胞逻辑门具有广泛应用的巨大潜力。然而,目前大多数可用的逻辑门都是由具有固有生物活性的药物(类)分子控制的。为了构建真正的正交电路和人工调控途径,生物惰性分子是理想的分子开关。在这里,我们应用遗传密码扩展和由两种生物惰性非天然氨基酸控制的工程逻辑门。遗传密码扩展依赖于正交的氨酰-tRNA 合成酶/tRNA 对,用于共翻译和定点非天然氨基酸掺入,通常响应琥珀(UAG)密码子。通过筛选文献中的 11 个四联体解码吡咯赖氨酸 tRNA 变体,我们发现这里测试的所有解码 CUAG 或 AGGA 的变体在哺乳动物细胞中都是有功能的。使用四联体解码正交对和一个琥珀解码对,我们构建了可以被两种不同非天然氨基酸成功控制的逻辑门,扩展了遗传密码扩展和哺乳动物细胞逻辑电路的范围。