Potts K A, Stieglitz J T, Lei M, Van Deventer J A
Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States.
Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155, United States.
Mol Syst Des Eng. 2020 Feb 1;5(2):573-588. doi: 10.1039/c9me00107g. Epub 2020 Jan 23.
The ability to genetically encode noncanonical amino acids (ncAAs) within proteins supports a growing number of applications ranging from fundamental biological studies to enhancing the properties of biological therapeutics. Currently, our quantitative understanding of ncAA incorporation systems is confounded by the diverse set of characterization and analysis approaches used to quantify ncAA incorporation events. While several effective reporter systems support such measurements, it is not clear how quantitative results from different reporters relate to one another, or which details influence measurements most strongly. Here, we evaluate the quantitative performance of single-fluorescent protein reporters, dual-fluorescent protein reporters, and cell surface-displayed protein reporters of ncAA insertion in response to the TAG (amber) codon in yeast. While different reporters support varying levels of apparent readthrough efficiencies, flow cytometry-based evaluations with dual reporters yielded measurements exhibiting consistent quantitative trends and precision across all evaluated conditions. Further investigations of dual-fluorescent protein reporter architecture revealed that quantitative outputs are influenced by stop codon location and N- and C-terminal fluorescent protein identity. Both dual-fluorescent protein reporters and a "drop-in" version of yeast display support quantification of ncAA incorporation in several single-gene knockout strains, revealing strains that enhance ncAA incorporation efficiency without compromising fidelity. Our studies reveal critical details regarding reporter system performance in yeast and how to effectively deploy such reporters. These findings have substantial implications for how to engineer ncAA incorporation systems-and protein translation apparatuses-to better accommodate alternative genetic codes for expanding the chemical diversity of biosynthesized proteins.
在蛋白质中对非标准氨基酸(ncAA)进行基因编码的能力支持了越来越多的应用,范围从基础生物学研究到增强生物治疗药物的特性。目前,我们对ncAA掺入系统的定量理解因用于量化ncAA掺入事件的各种表征和分析方法而变得复杂。虽然有几种有效的报告系统支持此类测量,但尚不清楚不同报告系统的定量结果如何相互关联,或者哪些细节对测量影响最大。在这里,我们评估了单荧光蛋白报告系统、双荧光蛋白报告系统以及酵母中响应TAG(琥珀)密码子的ncAA插入的细胞表面展示蛋白报告系统的定量性能。虽然不同的报告系统支持不同水平的表观通读效率,但基于流式细胞术的双报告系统评估在所有评估条件下都产生了具有一致定量趋势和精度的测量结果。对双荧光蛋白报告系统结构的进一步研究表明,定量输出受终止密码子位置以及N端和C端荧光蛋白特性的影响。双荧光蛋白报告系统和酵母展示的“插入式”版本都支持在几种单基因敲除菌株中对ncAA掺入进行定量,揭示了在不影响保真度的情况下提高ncAA掺入效率的菌株。我们的研究揭示了酵母中报告系统性能的关键细节以及如何有效部署此类报告系统。这些发现对于如何设计ncAA掺入系统和蛋白质翻译装置以更好地适应替代遗传密码以扩大生物合成蛋白质的化学多样性具有重大意义。