Suppr超能文献

基于高通量计算和机器学习设计二维卤化物钙钛矿

Designing Two-Dimensional Halide Perovskites Based on High-Throughput Calculations and Machine Learning.

作者信息

Hu Wenguang, Zhang Lei, Pan Zheng

机构信息

Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China.

Department of Applied Physics, School of Physics and Optoelectronic Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China.

出版信息

ACS Appl Mater Interfaces. 2022 May 11;14(18):21596-21604. doi: 10.1021/acsami.2c00564. Epub 2022 Apr 27.

Abstract

The interactions between ions and the low-dimensional halide perovskites are critical to realizing the next-generation energy storage devices such as photorechargeable ion batteries and ion capacitors. In this study, we performed high-throughput calculations and machine-learning analysis for ion adsorption on two-dimensional ABX halide perovskites. The first-principles calculations obtained an initial data set containing adsorption energies of 640 compositionally engineered ion/perovskite systems with diverse ions including Li, Zn, K, Na, Al, Ca, Mg, and F. The machine learning algorithms including k-nearest neighbors (KNN), Kriging, Random Forest, Rpart, SVM, and Xgboost algorithms were compared, and the Xgboost algorithm achieved the best accuracy ( = 0.97, = 0.93) and was selected to predict the virtual design space consisting of 11 976 ion/perovskite systems. The features were then analyzed and ranked according to their Pearson correlations to the output values. In particular, to better understand the features, diverse feature selection methods were employed to comprehensively evaluate the features. The machine-learning-predicted virtual design space was subsequently screened to select stable lead-free ion/perovskite systems with suitable band gaps and halogen mixing features. The present study provides a theoretical foundation to design halide perovskite materials for ion-based energy storage applications such as secondary ion batteries, ion capacitors, and solar-rechargeable batteries.

摘要

离子与低维卤化物钙钛矿之间的相互作用对于实现下一代储能设备(如光可充电离子电池和离子电容器)至关重要。在本研究中,我们对二维ABX卤化物钙钛矿上的离子吸附进行了高通量计算和机器学习分析。第一性原理计算获得了一个初始数据集,其中包含640个经成分设计的离子/钙钛矿体系的吸附能,这些体系包含多种离子,如Li、Zn、K、Na、Al、Ca、Mg和F。比较了包括k近邻(KNN)、克里金法、随机森林、Rpart、支持向量机(SVM)和Xgboost算法在内的机器学习算法,Xgboost算法实现了最佳准确率( = 0.97, = 0.93),并被选用于预测由11976个离子/钙钛矿体系组成的虚拟设计空间。然后根据特征与输出值的皮尔逊相关性对特征进行分析和排序。特别是,为了更好地理解这些特征,采用了多种特征选择方法对特征进行全面评估。随后对机器学习预测的虚拟设计空间进行筛选,以选择具有合适带隙和卤素混合特征的稳定无铅离子/钙钛矿体系。本研究为设计用于基于离子的储能应用(如二次离子电池、离子电容器和太阳能可充电电池)的卤化物钙钛矿材料提供了理论基础。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验