Suppr超能文献

用于钙钛矿材料设计与发现的机器学习中的特征选择

Feature Selection in Machine Learning for Perovskite Materials Design and Discovery.

作者信息

Wang Junya, Xu Pengcheng, Ji Xiaobo, Li Minjie, Lu Wencong

机构信息

Department of Mathematics, College of Sciences, Shanghai University, Shanghai 200444, China.

Materials Genome Institute, Shanghai University, Shanghai 200444, China.

出版信息

Materials (Basel). 2023 Apr 16;16(8):3134. doi: 10.3390/ma16083134.

Abstract

Perovskite materials have been one of the most important research objects in materials science due to their excellent photoelectric properties as well as correspondingly complex structures. Machine learning (ML) methods have been playing an important role in the design and discovery of perovskite materials, while feature selection as a dimensionality reduction method has occupied a crucial position in the ML workflow. In this review, we introduced the recent advances in the applications of feature selection in perovskite materials. First, the development tendency of publications about ML in perovskite materials was analyzed, and the ML workflow for materials was summarized. Then the commonly used feature selection methods were briefly introduced, and the applications of feature selection in inorganic perovskites, hybrid organic-inorganic perovskites (HOIPs), and double perovskites (DPs) were reviewed. Finally, we put forward some directions for the future development of feature selection in machine learning for perovskite material design.

摘要

由于具有优异的光电性能以及相应复杂的结构,钙钛矿材料一直是材料科学中最重要的研究对象之一。机器学习(ML)方法在钙钛矿材料的设计和发现中发挥着重要作用,而作为一种降维方法的特征选择在ML工作流程中占据着关键地位。在本综述中,我们介绍了特征选择在钙钛矿材料应用方面的最新进展。首先,分析了钙钛矿材料中关于ML的出版物的发展趋势,并总结了材料的ML工作流程。然后简要介绍了常用的特征选择方法,并综述了特征选择在无机钙钛矿、有机-无机杂化钙钛矿(HOIPs)和双钙钛矿(DPs)中的应用。最后,我们为钙钛矿材料设计的机器学习中特征选择的未来发展提出了一些方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ecdf/10146176/e5087114bcd4/materials-16-03134-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验