Department of Pharmacy, Ludwig-Maximilians University of Munich, Munich, Germany.
Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
Methods Mol Biol. 2022;2430:403-430. doi: 10.1007/978-1-0716-1983-4_26.
Microtubule dynamics can be inhibited with sub-second temporal resolution and cellular-scale spatial resolution, by using precise illuminations to optically pattern where and when photoswitchable microtubule-inhibiting chemical reagents exert their latent bioactivity. The recently available reagents (SBTub, PST, STEpo, AzTax, PHTub) now enable researchers to use light to reversibly modulate microtubule-dependent processes in eukaryotes, in 2D and 3D cell culture as well as in vivo, across a variety of model organisms: with applications in fields from cargo transport to cell migration, cell division, and embryonic development.Here we give an introduction to using these photoswitchable microtubule inhibitors in cells. We describe the theory of small molecule photoswitching, and the unique performance features, usage requirements, and limitations that photoswitchable chemical reagents have; then we summarize the major classes of photoswitchable microtubule inhibitors that are currently available, with the properties that suit them to different applications, and troubleshooting measures for avoiding common mistakes. We outline workflows to establish cellular assays where they are used to optically control microtubule dynamics in a temporally reversible fashion with spatial specificity down to a single selected cell within a field of view. The methods in this chapter also equip the reader to tackle advanced uses of photoswitchable chemical reagents, in 3D culture and in vivo.
微管动力学可以在亚秒级的时间分辨率和细胞级的空间分辨率下被抑制,通过使用精确的照明来光学地控制光可切换的微管抑制化学试剂施加其潜在生物活性的位置和时间。最近可用的试剂(SBTub、PST、ST-Epo、AzTax、PHTub)现在使研究人员能够用光在真核生物中可逆地调节微管依赖性过程,无论是在 2D 和 3D 细胞培养中还是在体内,跨越多种模式生物:在从货物运输到细胞迁移、细胞分裂和胚胎发育等领域都有应用。在这里,我们介绍了在细胞中使用这些光可切换的微管抑制剂。我们描述了小分子光开关的理论,以及光可切换化学试剂的独特性能特点、使用要求和限制;然后我们总结了目前可用的主要类别的光可切换微管抑制剂,以及适合不同应用的特性,并提供了避免常见错误的故障排除措施。我们概述了建立细胞测定的工作流程,其中它们用于以时空特异性的方式光学地控制微管动力学,空间特异性可达到视野内的单个选定细胞。本章中的方法还使读者能够应对 3D 培养和体内使用光可切换化学试剂的高级用途。