Department of Pharmacy, Ludwig-Maximilians University, Butenandtstrasse 5-13, Munich, 81377, Germany.
Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584, Utrecht, The Netherlands.
Nat Commun. 2020 Sep 15;11(1):4640. doi: 10.1038/s41467-020-18389-6.
Small molecule inhibitors are prime reagents for studies in microtubule cytoskeleton research, being applicable across a range of biological models and not requiring genetic engineering. However, traditional chemical inhibitors cannot be experimentally applied with spatiotemporal precision suiting the length and time scales inherent to microtubule-dependent cellular processes. We have synthesised photoswitchable paclitaxel-based microtubule stabilisers, whose binding is induced by photoisomerisation to their metastable state. Photoisomerising these reagents in living cells allows optical control over microtubule network integrity and dynamics, cell division and survival, with biological response on the timescale of seconds and spatial precision to the level of individual cells within a population. In primary neurons, they enable regulation of microtubule dynamics resolved to subcellular regions within individual neurites. These azobenzene-based microtubule stabilisers thus enable non-invasive, spatiotemporally precise modulation of the microtubule cytoskeleton in living cells, and promise new possibilities for studying intracellular transport, cell motility, and neuronal physiology.
小分子抑制剂是研究微管细胞骨架的主要试剂,适用于多种生物模型,且不需要基因工程。然而,传统的化学抑制剂在实验中无法实现适合微管依赖性细胞过程固有长度和时间尺度的时空精确应用。我们已经合成了光致变色的紫杉醇基微管稳定剂,其结合是通过光异构化到亚稳态诱导的。在活细胞中光异构化这些试剂可以对微管网络的完整性和动力学、细胞分裂和存活进行光学控制,其生物学响应时间尺度为秒,空间精度达到群体中单个人类细胞的水平。在原代神经元中,它们可以调节单个神经突内亚细胞区域的微管动力学。因此,这些基于偶氮苯的微管稳定剂能够在活细胞中实现对微管细胞骨架的非侵入性、时空精确调节,并为研究细胞内运输、细胞迁移和神经元生理学提供了新的可能性。