Nasrin Kabeer, Sudharshan Vasudevan, Arunkumar Murugesan, Sathish Marappan
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
Electrochemical Power Sources Division (ECPS), CSIR─Central Electrochemical Research Institute, Karaikudi 630 003, Tamil Nadu, India.
ACS Appl Mater Interfaces. 2022 May 11;14(18):21038-21049. doi: 10.1021/acsami.2c02871. Epub 2022 Apr 27.
Layered 2D/2D heterointerface composites experience interesting properties that greatly stimulate the recent surge in the attention as robust supercapacitor electrode materials, especially the MXene-based 2D/2D heterointerface for its robust energy storage compatibility. This report unveils a synergistically in situ prepared 2D/2D NbC/TiC MXene (NCTC) heterointerface nanoarchitecture by facile one-pot chemical etching. The methodology adopted enables the interconnected and simultaneous growth of MXenes exposing and retaining their active surfaces for enhanced ion diffusion pathways, charge storage dynamics, microstructural stability, and a noticeable potential window. Henceforth, the in situ developed NCTC heterointerface electrode delivered an excellent specific capacitance of 584 F/g at 2 A/g with a commendable energy density of 38.5 W h/kg in MXene supercapacitors owing to the augmented surface- and redox-based charge storage at the interface. Finally, the developed all-solid-state system demonstrated a superior cycling retention of 98% capacitance after 50,000 cycles. These superlative results encourage the exploration of such prospective 2D/2D heterointerfaces with intriguing charge storage and microstructural attributes for designing next-generation energy storage systems.
层状二维/二维异质界面复合材料具有有趣的特性,这极大地激发了近期作为强大超级电容器电极材料的关注度飙升,特别是基于MXene的二维/二维异质界面,因其强大的储能兼容性。本报告揭示了一种通过简便的一锅法化学蚀刻协同原位制备的二维/二维NbC/TiC MXene(NCTC)异质界面纳米结构。所采用的方法能够使MXene相互连接并同时生长,暴露并保留其活性表面,以增强离子扩散途径、电荷存储动力学、微观结构稳定性以及显著的电位窗口。此后,原位开发的NCTC异质界面电极在2 A/g的电流密度下表现出584 F/g的优异比电容,在MXene超级电容器中具有38.5 W h/kg的可观能量密度,这归因于界面处基于表面和氧化还原的电荷存储增加。最后,所开发的全固态系统在50,000次循环后表现出98%的电容优异循环保持率。这些卓越的结果鼓励探索具有有趣电荷存储和微观结构特性的此类前瞻性二维/二维异质界面,以设计下一代储能系统。