Han Cheolhee, Iftikhar Z, Kleeorin Yaakov, Anthore A, Pierre F, Meir Yigal, Mitchell Andrew K, Sela Eran
Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel.
Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), 91120 Palaiseau, France.
Phys Rev Lett. 2022 Apr 8;128(14):146803. doi: 10.1103/PhysRevLett.128.146803.
Fractional entropy is a signature of nonlocal degrees of freedom, such as Majorana zero modes or more exotic non-Abelian anyons. Although direct experimental measurements remain challenging, Maxwell relations provide an indirect route to the entropy through charge measurements. Here we consider multichannel charge-Kondo systems, which are predicted to host exotic quasiparticles due to a frustration of Kondo screening at low temperatures. In the absence of experimental data for the charge occupation, we derive relations connecting the latter to the conductance, for which experimental results have recently been obtained. Our analysis indicates that Majorana and Fibonacci anyon quasiparticles are well developed in existing two- and three-channel charge-Kondo devices, and that their characteristic k_{B}logsqrt[2] and k_{B}log[(1+sqrt[5])/2] entropies are experimentally measurable.
分数熵是非局域自由度的一种特征,比如马约拉纳零模或更奇特的非阿贝尔任意子。尽管直接的实验测量仍然具有挑战性,但麦克斯韦关系通过电荷测量提供了一条通往熵的间接途径。在这里,我们考虑多通道电荷 - 近藤系统,由于低温下近藤屏蔽的受挫,预计该系统会存在奇特的准粒子。在缺乏电荷占据的实验数据的情况下,我们推导出了将电荷占据与电导联系起来的关系,最近已经获得了关于电导的实验结果。我们的分析表明,马约拉纳和斐波那契任意子准粒子在现有的两通道和三通道电荷 - 近藤器件中发育良好,并且它们的特征熵(k_{B}\log\sqrt{2})和(k_{B}\log\frac{1 + \sqrt{5}}{2})在实验上是可测量的。