Zhang Gu, Hong Changki, Alkalay Tomer, Umansky Vladimir, Heiblum Moty, Gornyi Igor, Gefen Yuval
Beijing Academy of Quantum Information Sciences, Beijing, China.
Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, Karlsruhe, Germany.
Nat Commun. 2024 Apr 23;15(1):3428. doi: 10.1038/s41467-024-47335-z.
Despite its ubiquity in quantum computation and quantum information, a universally applicable definition of quantum entanglement remains elusive. The challenge is further accentuated when entanglement is associated with other key themes, e.g., quantum interference and quantum statistics. Here, we introduce two novel motifs that characterize the interplay of entanglement and quantum statistics: an 'entanglement pointer' and a 'statistics-induced entanglement entropy'. The two provide a quantitative description of the statistics-induced entanglement: (i) they are finite only in the presence of quantum entanglement underlined by quantum statistics and (ii) their explicit form depends on the quantum statistics of the particles (e.g., fermions, bosons, and anyons). We have experimentally implemented these ideas by employing an electronic Hong-Ou-Mandel interferometer fed by two highly diluted electron beams in an integer quantum Hall platform. Performing measurements of auto-correlation and cross-correlation of current fluctuations of the scattered beams (following 'collisions'), we quantify the statistics-induced entanglement by experimentally accessing the entanglement pointer and the statistics-induced entanglement entropy. Our theoretical and experimental approaches pave the way to study entanglement in various correlated platforms, e.g., those involving anyonic Abelian and non-Abelian states.
尽管量子纠缠在量子计算和量子信息中无处不在,但一个普遍适用的量子纠缠定义仍然难以捉摸。当纠缠与其他关键主题(如量子干涉和量子统计)相关联时,这一挑战会进一步加剧。在此,我们引入了两个新颖的主题,它们刻画了纠缠与量子统计之间的相互作用:一个“纠缠指针”和一个“统计诱导纠缠熵”。这两者提供了对统计诱导纠缠的定量描述:(i)它们仅在由量子统计所强调的量子纠缠存在时才是有限的;(ii)它们的显式形式取决于粒子的量子统计(例如,费米子、玻色子和任意子)。我们通过在整数量子霍尔平台中使用由两束高度稀释的电子束馈入的电子洪 - 欧 - 曼德尔干涉仪,实验实现了这些想法。通过对散射束(“碰撞”后)电流涨落的自相关和互相关进行测量,我们通过实验获取纠缠指针和统计诱导纠缠熵来量化统计诱导纠缠。我们的理论和实验方法为研究各种相关平台中的纠缠铺平了道路,例如那些涉及任意子阿贝尔和非阿贝尔态的平台。