Mondal Kallol, Ganguly Sudin, Maiti Santanu K
Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 Barrackpore Trunk Road, Kolkata 700108, India.
Department of Physics, School of Applied Sciences, University of Science and Technology, Techno City, Kiling Road, Baridua 9th Mile, Ri-Bhoi, Meghalaya 793101, India.
J Phys Condens Matter. 2022 May 23;34(29). doi: 10.1088/1361-648X/ac6b0b.
Non-collinear magnetic texture breaks the spin-sublattice symmetry which gives rise to a spin-splitting effect. Inspired by this, we study the spin-dependent transport properties in a non-collinear antiferromagnetic fractal structure, namely, the Sierpinski Gasket (SPG) triangle. We find that though the spin-up and spin-down currents are different, the degree of spin polarization is too weak. Finally, we come up with a proposal, where the degree of spin polarization can be enhanced significantly in the presence of a time-periodic driving field. Such a prescription of getting spin-filtering effect from an unpolarized source in a fractal network is completely new to the best of our knowledge. Starting from a higher generation of SPG to smaller ones, the precise dependencies of driving field parameters, spin-dependent scattering strength, interface sensitivity on spin polarization are critically investigated. The spatial distribution of spin-resolved bond current density is also explored. Interestingly, our proposed setup exhibits finite spin polarization for different spin-quantization axes. Arbitrarily polarized light is considered and its effect is incorporated through Floquet-Bloch ansatz. All the spin-resolved transport quantities are computed using Green's function formalism following the Landauer-Büttiker prescription. In light of the experimental feasibility of such fractal structures and manipulation of magnetic textures, the present work brings forth new insights into spintronic properties of non-collinear antiferromagnetic SPG. This should also entice the AFM spintronic community to explore other fractal structures with the possibility of unconventional features.
非共线磁织构打破了自旋子晶格对称性,从而产生自旋分裂效应。受此启发,我们研究了非共线反铁磁分形结构,即谢尔宾斯基垫片(SPG)三角形中的自旋相关输运性质。我们发现,尽管自旋向上和自旋向下的电流不同,但自旋极化程度太弱。最后,我们提出了一个方案,即在存在时间周期驱动场的情况下,自旋极化程度可以显著增强。据我们所知,在分形网络中从非极化源获得自旋过滤效应的这种方法是全新的。从更高代的SPG到更小的SPG,我们严格研究了驱动场参数、自旋相关散射强度、界面敏感性对自旋极化的精确依赖性。我们还探索了自旋分辨键电流密度的空间分布。有趣的是,我们提出的装置对于不同的自旋量子化轴表现出有限的自旋极化。我们考虑了任意偏振光,并通过弗洛凯 - 布洛赫假设将其效应纳入其中。所有自旋分辨的输运量都是按照朗道尔 - 布蒂克尔方法,使用格林函数形式计算得出的。鉴于这种分形结构的实验可行性以及磁织构的操控,本工作为非共线反铁磁SPG的自旋电子学性质带来了新的见解。这也应该会吸引反铁磁自旋电子学领域去探索其他可能具有非常规特性的分形结构。