Nan T, Quintela C X, Irwin J, Gurung G, Shao D F, Gibbons J, Campbell N, Song K, Choi S -Y, Guo L, Johnson R D, Manuel P, Chopdekar R V, Hallsteinsen I, Tybell T, Ryan P J, Kim J -W, Choi Y, Radaelli P G, Ralph D C, Tsymbal E Y, Rzchowski M S, Eom C B
Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA.
Department of Physics, University of Wisconsin-Madison, Madison, WI, 53706, USA.
Nat Commun. 2020 Sep 16;11(1):4671. doi: 10.1038/s41467-020-17999-4.
The interconversion of charge and spin currents via spin-Hall effect is essential for spintronics. Energy-efficient and deterministic switching of magnetization can be achieved when spin polarizations of these spin currents are collinear with the magnetization. However, symmetry conditions generally restrict spin polarizations to be orthogonal to both the charge and spin flows. Spin polarizations can deviate from such direction in nonmagnetic materials only when the crystalline symmetry is reduced. Here, we show control of the spin polarization direction by using a non-collinear antiferromagnet MnGaN, in which the triangular spin structure creates a low magnetic symmetry while maintaining a high crystalline symmetry. We demonstrate that epitaxial MnGaN/permalloy heterostructures can generate unconventional spin-orbit torques at room temperature corresponding to out-of-plane and Dresselhaus-like spin polarizations which are forbidden in any sample with two-fold rotational symmetry. Our results demonstrate an approach based on spin-structure design for controlling spin-orbit torque, enabling high-efficient antiferromagnetic spintronics.
通过自旋霍尔效应实现电荷电流与自旋电流的相互转换对于自旋电子学至关重要。当这些自旋电流的自旋极化与磁化强度共线时,可实现节能且确定性的磁化翻转。然而,对称性条件通常限制自旋极化与电荷流和自旋流均正交。只有当晶体对称性降低时,自旋极化才能在非磁性材料中偏离该方向。在此,我们展示了通过使用非共线反铁磁体MnGaN来控制自旋极化方向,其中三角形自旋结构在保持高晶体对称性的同时产生了低磁对称性。我们证明,外延MnGaN/坡莫合金异质结构在室温下可产生非常规的自旋轨道转矩,对应于面外以及类 Dresselhaus 自旋极化,而这在任何具有二重旋转对称性的样品中都是被禁止的。我们的结果展示了一种基于自旋结构设计来控制自旋轨道转矩的方法,从而实现高效的反铁磁自旋电子学。