Suppr超能文献

宏基因组解析基因组中盐胁迫相关途径的功能见解。

Functional Insights of Salinity Stress-Related Pathways in Metagenome-Resolved Genomes.

机构信息

Wetsus - European Centre of Excellence for Sustainable Water Technology, Leeuwarden, the Netherlands.

Laboratory of Microbiology, Wageningen University and Research, Wageningen, the Netherlands.

出版信息

Appl Environ Microbiol. 2022 May 24;88(10):e0244921. doi: 10.1128/aem.02449-21. Epub 2022 Apr 28.

Abstract

Recently, methanogenic archaea belonging to the genus were reported to have a fundamental role in maintaining stable ecosystem functioning in anaerobic bioreactors under different configurations/conditions. In this study, we reconstructed three metagenome-assembled genomes (MAGs) from granular sludge collected from saline upflow anaerobic sludge blanket (UASB) reactors, where was previously implicated with the formation of compact and stable granules under elevated salinity levels (up to 20 g/L Na). Genome annotation and pathway analysis of the MAGs revealed a genetic repertoire supporting their growth under high salinity. Specifically, the most dominant (MAG_279), classified as a subspecies of , had the potential to augment its salinity resistance through the production of different glycoconjugates via the N-glycosylation process, and via the production of compatible solutes as N-acetyl-β-lysine and ectoine. The stabilization and reinforcement of the cell membrane via the production of isoprenoids was identified as an additional stress-related pathway in this microorganism. The improved understanding of the salinity stress-related mechanisms of highlights its ecological niche in extreme conditions, opening new perspectives for high-efficiency methanisation of organic waste at high salinities, as well as the possible persistence of this methanogen in highly-saline natural anaerobic environments. Using genome-centric metagenomics, we discovered a new subspecies that appears to be a halotolerant acetoclastic methanogen with the flexibility for adaptation in the anaerobic digestion process both at low (5 g/L Na) and high salinity conditions (20 g/L Na). Annotation of the recovered genome revealed salinity stress-related functions, including the modification of EPS glycoconjugates and the production of compatible solutes. This is the first study reporting these genomic features within a sp., a milestone further supporting previous studies that identified as a key-driver in anaerobic granulation under high salinity stress.

摘要

最近,有研究报道称,属于 属的产甲烷古菌在不同构型/条件下的厌氧生物反应器中对维持稳定的生态系统功能起着基础性作用。在本研究中,我们从高盐度(高达 20 g/L Na)下先前被认为与致密稳定颗粒形成有关的盐上升流式厌氧污泥床(UASB)反应器中的颗粒污泥中重建了三个宏基因组组装基因组(MAG)。MAG 的基因组注释和途径分析揭示了支持其在高盐度下生长的遗传谱。具体而言,最占主导地位的 (MAG_279),被分类为 的亚种,通过 N-糖基化过程产生不同的糖缀合物,以及通过产生 N-乙酰-β-赖氨酸和章鱼胺等相容溶质,有潜力增强其耐盐性。通过产生异戊二烯,鉴定出稳定和强化细胞膜是该微生物的另一种与应激相关的途径。对 耐盐相关机制的深入了解突出了其在极端条件下的生态位,为在高盐度下高效进行有机废物甲烷化开辟了新的视角,同时也为这种产甲烷菌在高盐度的自然厌氧环境中的可能存在提供了可能。通过基于基因组的宏基因组学,我们发现了一个新的 亚种,它似乎是一种耐盐性的乙酸营养型产甲烷菌,具有在低(5 g/L Na)和高盐度条件(20 g/L Na)下适应厌氧消化过程的灵活性。回收的 基因组注释揭示了与盐胁迫相关的功能,包括 EPS 糖缀合物的修饰和相容溶质的产生。这是首次在 属内报告这些基因组特征的研究,进一步支持了先前的研究,即 是高盐胁迫下厌氧颗粒化的关键驱动因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验