Suppr超能文献

具有多个靶标识别域的四面体DNA纳米结构用于粘蛋白1的超灵敏电化学检测

Tetrahedral DNA Nanostructure with Multiple Target-Recognition Domains for Ultrasensitive Electrochemical Detection of Mucin 1.

作者信息

Hu Wenxi, Chang Yuanyuan, Huang Junqing, Chai Yaqin, Yuan Ruo

机构信息

Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.

出版信息

Anal Chem. 2022 May 10;94(18):6860-6865. doi: 10.1021/acs.analchem.2c00864. Epub 2022 Apr 27.

Abstract

In this work, a tetrahedral DNA nanostructure (TDN) designed with multiple biomolecular recognition domains (m-TDN) was assembled to construct an ultrasensitive electrochemical biosensor for the quantitative detection of tumor-associated mucin 1 (MUC-1) protein. This new nanostructure not only effectively increased the capture efficiency of target proteins compared to the traditional TDN with a single recognition domain but also enhanced the sensitivity of the constructed electrochemical biosensors. Once the target MUC-1 was captured by the protein aptamers, the ferrocene-marked DNA strands as electrochemical signal probes at the vertices of m-TDN would be released away from the electrode surface, causing significant reduction of the electrochemical signal, thereby enhancing significantly the detection sensitivity. As a result, this well-designed biosensor achieved ultrasensitive detection of the biomolecule at a linear range from 1 fg mL to 1 ng mL, with the limit of detection down to 0.31 fg mL. This strategy provides a new approach to enhance the detection sensitivity for the diagnosis of diseases.

摘要

在这项工作中,构建了一种设计有多个生物分子识别域的四面体DNA纳米结构(m-TDN),以构建用于定量检测肿瘤相关粘蛋白1(MUC-1)蛋白的超灵敏电化学生物传感器。与具有单个识别域的传统TDN相比,这种新型纳米结构不仅有效提高了目标蛋白的捕获效率,还增强了所构建电化学生物传感器的灵敏度。一旦目标MUC-1被蛋白质适配体捕获,作为m-TDN顶点处电化学信号探针的二茂铁标记DNA链将从电极表面释放,导致电化学信号显著降低,从而显著提高检测灵敏度。结果,这种精心设计的生物传感器在1 fg/mL至1 ng/mL的线性范围内实现了对生物分子的超灵敏检测,检测限低至0.31 fg/mL。该策略为提高疾病诊断的检测灵敏度提供了一种新方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验