School of Engineering, Macquarie University, Macquarie Park, NSW, 2113, Australia.
Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia.
Sci Rep. 2022 Apr 27;12(1):6870. doi: 10.1038/s41598-022-10627-9.
Understanding the underlying processes of biomineralization is crucial to a range of disciplines allowing us to quantify the effects of climate change on marine organisms, decipher the details of paleoclimate records and advance the development of biomimetic materials. Many biological minerals form via intermediate amorphous phases, which are hard to characterize due to their transient nature and a lack of long-range order. Here, using Monte Carlo simulations constrained by X-ray and neutron scattering data together with model building, we demonstrate a method for determining the structure of these intermediates with a study of amorphous calcium carbonate (ACC) which is a precursor in the bio-formation of crystalline calcium carbonates. We find that ACC consists of highly ordered anhydrous nano-domains of approx. 2 nm that can be described as nanocrystalline. These nano-domains are held together by an interstitial net-like matrix of water molecules which generate, on the mesoscale, a heterogeneous and gel-like structure of ACC. We probed the structural stability and dynamics of our model on the nanosecond timescale by molecular dynamics simulations. These simulations revealed a gel-like and glassy nature of ACC due to the water molecules and carbonate ions in the interstitial matrix featuring pronounced orientational and translational flexibility. This allows for viscous mobility with diffusion constants four to five orders of magnitude lower than those observed in solutions. Small and ultra-small angle neutron scattering indicates a hierarchically-ordered organization of ACC across length scales that allow us, based on our nano-domain model, to build a comprehensive picture of ACC formation by cluster assembly from solution. This contribution provides a new atomic-scale understanding of ACC and provides a framework for the general exploration of biomineralization and biomimetic processes.
理解生物矿化的基本过程对于一系列学科至关重要,使我们能够量化气候变化对海洋生物的影响,解析古气候记录的细节,并推进仿生材料的发展。许多生物矿物通过中间非晶相形成,由于其瞬态性质和缺乏长程有序性,这些中间相很难被表征。在这里,我们使用受 X 射线和中子散射数据以及模型构建约束的蒙特卡罗模拟,通过对无定形碳酸钙 (ACC) 的研究,展示了一种确定这些中间相结构的方法,ACC 是结晶碳酸钙生物形成的前体。我们发现,ACC 由高度有序的无水纳米域组成,约为 2nm,可以描述为纳米晶。这些纳米域由水分子的间隙网状基质连接在一起,在介观尺度上生成 ACC 的不均匀和凝胶状结构。我们通过分子动力学模拟在纳秒时间尺度上探测了我们模型的结构稳定性和动力学。这些模拟揭示了 ACC 的凝胶状和玻璃态性质,由于间隙基质中的水分子和碳酸根离子具有明显的取向和平移灵活性。这允许粘性流动性,扩散常数比溶液中观察到的低四到五个数量级。小角和超小角中子散射表明 ACC 在长度尺度上具有分级有序的组织,使我们能够基于我们的纳米域模型,通过从溶液中组装簇来构建 ACC 形成的综合图像。这一贡献提供了对 ACC 的新原子尺度理解,并为生物矿化和仿生过程的一般探索提供了框架。