Research School of Earth Sciences, Australian National University, Canberra, ACT, 2601, Australia.
Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW, 2006, Australia.
Nat Commun. 2023 Apr 20;14(1):2254. doi: 10.1038/s41467-023-37814-0.
Biominerals, such as nacreous bivalve shells, are important archives of environmental information. Most marine calcifiers form their shells from amorphous calcium carbonate, hypothesised to occur via particle attachment and stepwise crystallisation of metastable precursor phases. However, the mechanism of this transformation, including the incorporation of trace elements used for environmental reconstructions, are poorly constrained. Here, using shells of the Mediterranean mussel, we explore the formation of nacre from the meso- to the atomic scale. We use a combination of strontium pulse-chase labelling experiments in aquaculture and correlated micro- to sub-nanoscale analysis to show that nacre grows in a dynamic two-step process with extensional and space-filling growth components. Furthermore, we show that nacre crystallizes via localised dissolution and reprecipitation within nanogranules. Our findings elucidate how stepwise crystallization pathways affect trace element incorporation in natural biominerals, while preserving their intricate hierarchical ultrastructure.
生物矿物,如珍珠层双壳贝类贝壳,是环境信息的重要档案。大多数海洋钙化生物通过颗粒附着和亚稳前体相的逐步结晶形成其贝壳,假设以此方式形成。然而,这种转化的机制,包括痕量元素的掺入,这些元素用于环境重建,受到严格限制。在这里,我们使用地中海贻贝的贝壳,从介观到原子尺度探索珍珠层的形成。我们结合在水产养殖中进行的锶脉冲追踪标记实验和相关的微观到亚纳米尺度分析,表明珍珠层的生长经历了一个动态的两步过程,具有拉伸和空间填充生长成分。此外,我们表明珍珠层通过纳米颗粒内的局部溶解和再沉淀而结晶。我们的研究结果阐明了分步结晶途径如何影响天然生物矿物中痕量元素的掺入,同时保持其错综复杂的分级超结构。