Jacquet Margot, Kiliszek Małgorzata, Osella Silvio, Izzo Miriam, Sar Jarosław, Harputlu Ersan, Unlu C Gokhan, Trzaskowski Bartosz, Ocakoglu Kasim, Kargul Joanna
Solar Fuels Laboratory, Centre of New Technologies, University of Warsaw Banacha 2C 02-097 Warsaw Poland
Chemical and Biological Systems Simulation Lab, Centre of New Technologies, University of Warsaw Banacha 2C 02-097 Warsaw Poland.
RSC Adv. 2021 May 25;11(31):18860-18869. doi: 10.1039/d1ra02419a. eCollection 2021 May 24.
Construction of green nanodevices characterised by excellent long-term performance remains high priority in biotechnology and medicine. Tight electronic coupling of proteins to electrodes is essential for efficient direct electron transfer (DET) across the bio-organic interface. Rational modulation of this coupling depends on in-depth understanding of the intricate properties of interfacial DET. Here, we dissect the molecular mechanism of DET in a hybrid nanodevice in which a model electroactive protein, cytochrome (cyt ), naturally interacting with photosystem I, was interfaced with single layer graphene (SLG) the conductive self-assembled monolayer (SAM) formed by pyrene-nitrilotriacetic acid (pyr-NTA) molecules chelated to transition metal redox centers. We demonstrate that efficient DET occurs between graphene and cyt whose kinetics and directionality depends on the metal incorporated into the bio-organic interface: Co enhances the cathodic current from SLG to haem, whereas Ni exerts the opposite effect. QM/MM simulations yield the mechanistic model of interfacial DET based on either tunnelling or hopping of electrons between graphene, pyr-NTA-M SAM and cyt depending on the metal in SAM. Considerably different electronic configurations were identified for the interfacial metal redox centers: a closed-shell system for Ni and a radical system for the Co with altered occupancy of HOMO/LUMO levels. The feasibility of fine-tuning the electronic properties of the bio-molecular SAM upon incorporation of various metal centers paves the way for the rational design of the optimal molecular interface between abiotic and biotic components of the viable green hybrid devices, solar cells, optoelectronic nanosystems and solar-to-fuel assemblies.
构建具有卓越长期性能的绿色纳米器件在生物技术和医学领域仍然是重中之重。蛋白质与电极的紧密电子耦合对于生物有机界面上高效的直接电子转移(DET)至关重要。这种耦合的合理调控依赖于对界面DET复杂特性的深入理解。在此,我们剖析了一种混合纳米器件中DET的分子机制,在该器件中,一种与光系统I自然相互作用的模型电活性蛋白质——细胞色素c(cyt c),与单层石墨烯(SLG)相连,SLG是由螯合到过渡金属氧化还原中心的芘 - 次氮基三乙酸(pyr - NTA)分子形成的导电自组装单分子层(SAM)。我们证明了在石墨烯和cyt c之间发生了高效的DET,其动力学和方向性取决于掺入生物有机界面的金属:Co增强了从SLG到血红素的阴极电流,而Ni则产生相反的效果。量子力学/分子力学(QM/MM)模拟基于电子在石墨烯、pyr - NTA - M SAM和cyt c之间的隧穿或跳跃产生了界面DET的机理模型,这取决于SAM中的金属。已确定界面金属氧化还原中心具有显著不同的电子构型:Ni为闭壳层系统,Co为自由基系统,其最高占据分子轨道(HOMO)/最低未占分子轨道(LUMO)能级的占据情况有所改变。在掺入各种金属中心时微调生物分子SAM电子性质的可行性为合理设计可行的绿色混合器件(如太阳能电池、光电纳米系统和太阳能 - 燃料组件)中非生物和生物成分之间的最佳分子界面铺平了道路。