Garg Utsav, Azim Yasser, Alam Mahboob
Department of Applied Chemistry, Zakir Husain College of Engineering & Technology, Aligarh Muslim University Aligarh 202002 Uttar Pradesh India
Division of Chemistry & Biotechnology, Dongguk University 123 Dongdae-ro Gyeongju Republic of Korea
RSC Adv. 2021 Jun 17;11(35):21463-21474. doi: 10.1039/d1ra01714d. eCollection 2021 Jun 15.
Salts and cocrystals are the two important solid forms when a carboxylic acid crystallizes with an aminopyrimidine base such that the extent of proton transfer distinguishes between them. The Δp value (p (base) - p (acid)) predicts whether the proton transfer will occur or not. However, the Δp range, 0 < Δp < 3, is elusive where the formation of cocrystal or salt cannot be predicted. The current study has been done to obtain a generalization in this elusive range with the Cambridge Structural Database (CSD). Based on the generalization, a novel salt (FTCA)(2-AP) of furantetracarboxylic acid (FTCA) with 2-aminopyrimidine (2-AP) is obtained. The structural confirmation was done by single-crystal X-ray diffraction (SCXRD). Density functional theory (DFT) calculations were performed at the IEF-PCM-B3LYP-D3/6-311G(d,p) level to optimize the geometrical coordinates of salt for frontier molecular orbitals (FMOs) and molecular electrostatic potential (MESP). The geometrical parameters of most of the atoms of the optimized salt structure were comparable with SCXRD data. Additionally, results of other computational methods such as (Hartree-Fock; HF and second-order-Møller-Plesset perturbation; MP2) and semi-empirical were also compared with experimental results of the salt. Quantum theory of atoms in molecules (QTAIM), reduced density gradient (RDG), and natural bond orbital (NBO) analyses were done to calculate the strength and nature of non-covalent interactions present in the salt. Furthermore, Hirshfeld surface analysis, interaction energy calculations, and total energy frameworks were performed for qualitative and quantitative estimations of strong and weak intermolecular interactions.
当羧酸与氨基嘧啶碱结晶时,盐和共晶体是两种重要的固体形式,质子转移的程度将它们区分开来。Δp值(p(碱)-p(酸))预测质子转移是否会发生。然而,Δp范围在0 < Δp < 3时难以捉摸,在此范围内无法预测共晶体或盐的形成。目前的研究旨在利用剑桥结构数据库(CSD)在这个难以捉摸的范围内获得一个通则。基于该通则,获得了呋喃四羧酸(FTCA)与2-氨基嘧啶(2-AP)的新型盐(FTCA)(2-AP)。通过单晶X射线衍射(SCXRD)进行结构确认。在IEF-PCM-B3LYP-D3/6-311G(d,p)水平上进行密度泛函理论(DFT)计算,以优化盐的几何坐标用于前沿分子轨道(FMO)和分子静电势(MESP)。优化后的盐结构中大多数原子的几何参数与SCXRD数据相当。此外,还将其他计算方法(如哈特里-福克方法;HF和二阶莫勒-普莱塞特微扰方法;MP2)和半经验方法的结果与该盐的实验结果进行了比较。进行了分子中的原子量子理论(QTAIM)、约化密度梯度(RDG)和自然键轨道(NBO)分析,以计算盐中存在的非共价相互作用的强度和性质。此外,还进行了 Hirshfeld 表面分析、相互作用能计算和总能量框架分析,以对强弱分子间相互作用进行定性和定量估计。