Suppr超能文献

用于增强锂存储性能的分级CoSnO@NC@MnO@NC纳米盒阳极材料的集成设计

Integrated Design of Hierarchical CoSnO@NC@MnO@NC Nanobox as Anode Material for Enhanced Lithium Storage Performance.

作者信息

Chen Zhiwen, Fei Siming, Wu Chenghao, Xin Peijun, Huang Shoushuang, Selegård Linnéa, Uvdal Kajsa, Hu Zhangjun

机构信息

Shanghai Applied Radiation Institute, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.

Division of Molecular Surface Physics & Nanoscience, Department of Physics, Chemistry and Biology, Linköping University, Linköping 58183, Sweden.

出版信息

ACS Appl Mater Interfaces. 2020 Apr 29;12(17):19768-19777. doi: 10.1021/acsami.9b22368. Epub 2020 Apr 17.

Abstract

Transition-metal oxides (TMOs) are potential candidates for anode materials of lithium-ion batteries (LIBs) due to their high theoretical capacity (∼1000 mA h/g) and enhanced safety from suppressing the formation of lithium dendrites. However, the poor electron conductivity and the large volume expansion during lithiation/delithiation processes are still the main hurdles for the practical usage of TMOs as anode materials. In this work, the CoSnO@NC@MnO@NC hierarchical nanobox (CNMN) is then proposed and fabricated to solve those issues. The as-prepared nanobox contains hollow cubic CoSnO as a core and dual N-doped carbon-"sandwiched" MnO particles as a shell. As anode materials of LIBs, the hollow and carbon interlayer structures effectively accommodate the volume expansion while dual active TMOs of CoSnO and MnO efficiently increase the specific capacity. Notably, the dual-layer structure of N-doped carbons plays a critical functional role in the incorporated composites, where the inner layer serves as a reaction substrate and a spatial barrier and the outer layer offers electron conductivity, enabling more effective involvement of active anode materials in lithium storage, as well as maintaining their high activity during lithium cycling. Subsequently, the as-prepared CNMN exhibits a high specific capacity of 1195 mA h/g after the 200th cycle at 0.1C and an excellent stable reversible capacity of about 876 mA h/g after the 300th cycle at 0.5C with only 0.07 mA h/g fade per cycle after 300 cycles. Even after a 250 times fast charging/discharging cycle both at 5C, it still retains a reversible capacity of 422.6 mA h/g. We ascribe the enhanced lithium storage performances to the novel hierarchical architectures achieved from the rational design.

摘要

过渡金属氧化物(TMOs)因其高理论容量(约1000 mA h/g)以及在抑制锂枝晶形成方面增强的安全性,成为锂离子电池(LIBs)负极材料的潜在候选者。然而,电子传导性差以及在锂化/脱锂过程中的大体积膨胀仍是TMOs作为负极材料实际应用的主要障碍。在这项工作中,为了解决这些问题,提出并制备了CoSnO@NC@MnO@NC分级纳米盒(CNMN)。所制备的纳米盒包含空心立方CoSnO作为核心以及双N掺杂碳“夹芯”MnO颗粒作为外壳。作为LIBs的负极材料,空心和碳夹层结构有效地适应了体积膨胀,而CoSnO和MnO的双活性TMOs有效地提高了比容量。值得注意的是,N掺杂碳的双层结构在复合体系中发挥着关键的功能作用,其中内层作为反应底物和空间屏障,外层提供电子传导性,使活性负极材料更有效地参与锂存储,并在锂循环过程中保持其高活性。随后,所制备的CNMN在0.1C下第200次循环后表现出1195 mA h/g的高比容量,在0.5C下第300次循环后表现出约876 mA h/g的优异稳定可逆容量,300次循环后每循环仅衰减0.07 mA h/g。即使在5C下进行250次快速充放电循环后,它仍保留422.6 mA h/g的可逆容量。我们将增强的锂存储性能归因于通过合理设计实现的新型分级结构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验