Suppr超能文献

石墨烯中氮(N)和硼(B)的掺杂浓度如何改变水的吸附?

How do the doping concentrations of N and B in graphene modify the water adsorption?

作者信息

Pham Thi Tan, Pham Thanh Ngoc, Chihaia Viorel, Vu Quang Anh, Trinh Thuat T, Pham Trung Thanh, Van Thang Le, Son Do Ngoc

机构信息

Ho Chi Minh City University of Technology 268 Ly Thuong Kiet Street, Ward 14, District 10 Ho Chi Minh City Vietnam

Vietnam National University Ho Chi Minh City Quarter 6, Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam.

出版信息

RSC Adv. 2021 Jun 1;11(32):19560-19568. doi: 10.1039/d1ra01506k. eCollection 2021 May 27.

Abstract

Understanding the interaction of water and graphene is crucial for various applications such as water purification, desalination, and electrocatalysis. Experimental and theoretical studies have already investigated water adsorption on N- and B-doped graphene. However, there are no reports available that elucidate the influences of the N and B doping content in graphene on the microscopic geometrical structure and the electronic properties of the adsorbed water. Thus, this work is devoted to solving this problem using self-consistent van der Waals density functional theory calculations. The N and B doping contents of 0.0, 3.1, 6.3, and 9.4% were considered. The results showed that the binding energy of water increases almost linearly as a function of doping content at all concentrations for N-doped graphene but below 6.3% for B-doped graphene. In the linear range, the binding energy increases by approximately 30 meV for each increment of the doping ratio. Analyses of the geometric and electronic structures explained the enhancement of the water-graphene interaction with the variation in doping percentage.

摘要

了解水与石墨烯的相互作用对于水净化、海水淡化和电催化等各种应用至关重要。实验和理论研究已经对水在氮掺杂和硼掺杂石墨烯上的吸附进行了研究。然而,尚无报道阐明石墨烯中氮和硼掺杂含量对吸附水的微观几何结构和电子性质的影响。因此,这项工作致力于使用自洽范德华密度泛函理论计算来解决这个问题。考虑了0.0%、3.1%、6.3%和9.4%的氮和硼掺杂含量。结果表明,对于氮掺杂石墨烯,在所有浓度下,水的结合能几乎随掺杂含量呈线性增加;而对于硼掺杂石墨烯,在低于6.3%的浓度下才呈线性增加。在线性范围内,掺杂比每增加一次,结合能增加约30毫电子伏特。对几何结构和电子结构的分析解释了水-石墨烯相互作用随掺杂百分比变化而增强的现象。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cac3/9033564/5d54b507b248/d1ra01506k-f1.jpg

相似文献

1
How do the doping concentrations of N and B in graphene modify the water adsorption?
RSC Adv. 2021 Jun 1;11(32):19560-19568. doi: 10.1039/d1ra01506k. eCollection 2021 May 27.
2
Adsorbed Molecules as Interchangeable Dopants and Scatterers with a Van der Waals Bonding Memory in Graphene Sensors.
ACS Sens. 2020 Jul 24;5(7):2003-2009. doi: 10.1021/acssensors.0c00403. Epub 2020 Jul 8.
3
DFT study of water on graphene: Synergistic effect of multilayer p-doping.
J Chem Phys. 2023 Dec 7;159(21). doi: 10.1063/5.0161160.
4
Tunable Electronic Properties of Nitrogen and Sulfur Doped Graphene: Density Functional Theory Approach.
Nanomaterials (Basel). 2019 Feb 15;9(2):268. doi: 10.3390/nano9020268.
6
Squeezing water clusters between graphene sheets: energetics, structure, and intermolecular interactions.
Phys Chem Chem Phys. 2014 Dec 21;16(47):26004-15. doi: 10.1039/c4cp02575j. Epub 2014 Oct 30.
7
First principles calculations of phenol adsorption on pristine and group III (B, Al, Ga) doped graphene layers.
J Mol Model. 2014 Feb;20(2):2112. doi: 10.1007/s00894-014-2112-0. Epub 2014 Feb 14.
8
B, N, and Si Single-Doping at Graphene/Cu (111) Interfaces to Adjust Electrical Properties.
Langmuir. 2023 Jul 4;39(26):9172-9179. doi: 10.1021/acs.langmuir.3c00952. Epub 2023 Jun 16.
9
Optoelectronic Properties of Van Der Waals Hybrid Structures: Fullerenes on Graphene Nanoribbons.
Nanomaterials (Basel). 2017 Mar 20;7(3):69. doi: 10.3390/nano7030069.
10
Beyond van der Waals Interaction: The Case of MoSe Epitaxially Grown on Few-Layer Graphene.
ACS Nano. 2018 Mar 27;12(3):2319-2331. doi: 10.1021/acsnano.7b07446. Epub 2018 Feb 6.

引用本文的文献

本文引用的文献

1
Simultaneous adsorption of SO and CO in an Ni(bdc)(ted) metal-organic framework.
RSC Adv. 2018 Nov 16;8(67):38648-38655. doi: 10.1039/c8ra07919f. eCollection 2018 Nov 14.
3
Electronic and optical properties of monolayer MoS under the influence of polyethyleneimine adsorption and pressure.
RSC Adv. 2020 Jan 27;10(8):4201-4210. doi: 10.1039/c9ra09042h. eCollection 2020 Jan 24.
4
A new planar BCN lateral heterostructure with outstanding strength and defect-mediated superior semiconducting to metallic properties.
Phys Chem Chem Phys. 2020 Oct 14;22(38):22066-22077. doi: 10.1039/d0cp02973d. Epub 2020 Sep 28.
6
Formation of Water Layers on Graphene Surfaces.
ACS Omega. 2017 May 18;2(5):2184-2190. doi: 10.1021/acsomega.7b00365. eCollection 2017 May 31.
8
Physisorption of Water on Graphene: Subchemical Accuracy from Many-Body Electronic Structure Methods.
J Phys Chem Lett. 2019 Feb 7;10(3):358-368. doi: 10.1021/acs.jpclett.8b03679. Epub 2019 Jan 10.
9
Structure prediction of boron-doped graphene by machine learning.
J Chem Phys. 2018 Jun 28;148(24):241716. doi: 10.1063/1.5018065.
10
Tuning the Doping Types in Graphene Sheets by N Monoelement.
Nano Lett. 2018 Jan 10;18(1):386-394. doi: 10.1021/acs.nanolett.7b04249. Epub 2017 Dec 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验