Université Grenoble Alpes , CEA, CNRS, Grenoble INP, INAC-SPINTEC, 38000 Grenoble , France.
Université Grenoble Alpes , CEA, LETI, Minatec Campus, F-38054 Grenoble , France.
ACS Nano. 2018 Mar 27;12(3):2319-2331. doi: 10.1021/acsnano.7b07446. Epub 2018 Feb 6.
Van der Waals heterojunctions composed of graphene and transition metal dichalcogenides have gain much attention because of the possibility to control and tailor band structure, promising applications in two-dimensional optoelectronics and electronics. In this report, we characterized the van der Waals heterojunction MoSe/few-layer graphene with a high-quality interface using cutting-edge surface techniques scaling from atomic to microscopic range. These surface analyses gave us a complete picture of the atomic structure and electronic properties of the heterojunction. In particular, we found two important results: the commensurability between the MoSe and few-layer graphene lattices and a band-gap opening in the few-layer graphene. The band gap is as large as 250 meV, and we ascribed it to an interface charge transfer that results in an electronic depletion in the few-layer graphene. This conclusion is well supported by electron spectroscopy data and density functional theory calculations. The commensurability between the MoSe and graphene lattices as well as the band-gap opening clearly show that the interlayer interaction goes beyond the simple van der Waals interaction. Hence, stacking two-dimensional materials in van der Waals heterojunctions enables us to tailor the atomic and electronic properties of individual layers. It also permits the introduction of a band gap in few-layer graphene by interface charge transfer.
由石墨烯和过渡金属二卤化物组成的范德华异质结由于有可能控制和调整能带结构而受到广泛关注,在二维光电学和电子学中有很好的应用前景。在本报告中,我们使用从原子到微观尺度的尖端表面技术对高质量界面的范德华异质结 MoSe/少层石墨烯进行了特性描述。这些表面分析使我们对异质结的原子结构和电子性质有了完整的认识。特别是,我们发现了两个重要的结果:MoSe 和少层石墨烯晶格的协调性以及少层石墨烯中的带隙打开。带隙高达 250meV,我们将其归因于界面电荷转移,导致少层石墨烯中的电子耗尽。这一结论得到电子能谱数据和密度泛函理论计算的很好支持。MoSe 和石墨烯晶格之间的协调性以及带隙的打开清楚地表明,层间相互作用超出了简单的范德华相互作用。因此,将二维材料堆叠在范德华异质结中可以使我们调整各个层的原子和电子性质。它还可以通过界面电荷转移在少层石墨烯中引入带隙。