Che Hassan Hazirah, Mohd Said Suhana, Nik Ibrahim Nik Muhd Jazli, Megat Hasnan Megat Muhammad Ikhsan, Mohd Noor Ikhwan Syafiq, Zakaria Rozalina, Mohd Salleh Mohd Faiz, Md Noor Nur Linahafizza, Abdullah Norbani
Department of Electrical Engineering, Faculty of Engineering, University of Malaya 50603 Kuala Lumpur Malaysia
Microelectronic and Nanotechnology - Shamsuddin Research Centre (MiNT-SRC), Faculty of Electrical and Electronic Engineering, University Tun Hussein Onn Parit Raja 86400 Batu Pahat Johor Malaysia.
RSC Adv. 2021 Jun 14;11(34):20970-20982. doi: 10.1039/d1ra01387d. eCollection 2021 Jun 9.
In this work, we present a spin-crossover (SCO) complex molecular formulation Fe(L ) in an electrochemical single couple solution. A Seebeck voltage arises when an electrochemical single couple solution is subjected to a temperature difference, resulting in a single couple reaction at either terminal of the electrochemical cell. The ultrahigh Seebeck coefficients were obtained due to a number of molecular optimisation strategies. The Fe(L) complex demonstrated a maximum Seebeck coefficient of 8.67 mV K, achieved through a six-pronged approach to maximise entropy during the transition from low spin (LS) to high spin (HS) through: (i) a change in spin state, (ii) a change in physical liquid crystalline state, (iii) the spin Seebeck effect, (iv) the kosmotropic and chaotropic effect, (v) the fastener effect and (vi) thermal heat absorbance. A reduction of the Seebeck coefficient to 1.68 mV K during the HS-LS transition at higher temperatures is related to the single spin state transition entropy change. In summary, this paper presents a systematic study to identify the contributing factors in the production of a sensor with an ultrahigh Seebeck coefficient for energy harvesting through the optimisation of its molecular entropy elements.
在这项工作中,我们展示了一种电化学单偶溶液中的自旋交叉(SCO)复合分子配方Fe(L )。当电化学单偶溶液受到温度差影响时会产生塞贝克电压,导致在电化学电池的任一电极发生单偶反应。由于多种分子优化策略,获得了超高的塞贝克系数。Fe(L)配合物展示出最大塞贝克系数为8.67 mV K,这是通过一种六管齐下的方法实现的,即在从低自旋(LS)到高自旋(HS)的转变过程中最大化熵,具体方法包括:(i)自旋状态的变化,(ii)物理液晶状态的变化,(iii)自旋塞贝克效应,(iv)向列相和离液序列高聚物效应,(v)扣合效应,以及(vi)热吸收。在较高温度下HS-LS转变过程中塞贝克系数降至1.68 mV K与单自旋状态转变熵变有关。总之,本文进行了一项系统研究,以确定通过优化分子熵元素来生产具有超高塞贝克系数用于能量收集的传感器的影响因素。