文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

MNP-cellulose-OSOH as an efficient and biodegradable heterogeneous catalyst for green synthesis of trisubstituted imidazoles.

作者信息

Saeedi Shaghayegh, Rahmati Abbas

机构信息

Department of Chemistry, University of Isfahan P. O. Box 81746-73441 Isfahan Iran

出版信息

RSC Adv. 2022 Apr 19;12(19):11740-11749. doi: 10.1039/d2ra01348g. eCollection 2022 Apr 13.


DOI:10.1039/d2ra01348g
PMID:35481103
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9016742/
Abstract

Cellulose is an eco-friendly, efficient, and suitable substrate for use as a coating material and support in the preparation of catalysts. Herein, MNP-cellulose-OSOH was prepared as an efficient heterogeneous catalyst composed of FeO nanoparticles covered with cellulose-OSOH and used for the synthesis of trisubstituted imidazoles. The catalyst was characterized by FT-IR, CHNS, ICP, PXRD, EDAX, elemental mapping, SEM, TEM, zeta potential, TGA, and VSM techniques. The catalytic activity was evaluated in the one-pot three-component synthesis of trisubstituted imidazole derivatives using benzil or 9,10-phenanthrenequinone, different aldehydes, and ammonium acetate in EtOH solvent at 80 °C over 30 min. The yields of products were excellent, in the range 83-97%. The catalyst showed outstanding catalytic performance toward heating conditions and good reusability. Also, this methodology had several advantages, such as simple procedures, short reaction time, excellent yield, simple workup, and mild reaction conditions.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57b4/9016742/6652d552c51c/d2ra01348g-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57b4/9016742/b0df8be96b2a/d2ra01348g-s1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57b4/9016742/6197d8c59795/d2ra01348g-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57b4/9016742/083e38ba03b5/d2ra01348g-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57b4/9016742/78d7692f22a2/d2ra01348g-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57b4/9016742/aa28ea1d1bc0/d2ra01348g-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57b4/9016742/401734d916f6/d2ra01348g-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57b4/9016742/718adcb05373/d2ra01348g-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57b4/9016742/7f9f25f55797/d2ra01348g-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57b4/9016742/00707918ee8b/d2ra01348g-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57b4/9016742/7a02a87e38bf/d2ra01348g-s2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57b4/9016742/0fcb0f95a1b7/d2ra01348g-s3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57b4/9016742/bf685674c838/d2ra01348g-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57b4/9016742/6652d552c51c/d2ra01348g-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57b4/9016742/b0df8be96b2a/d2ra01348g-s1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57b4/9016742/6197d8c59795/d2ra01348g-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57b4/9016742/083e38ba03b5/d2ra01348g-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57b4/9016742/78d7692f22a2/d2ra01348g-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57b4/9016742/aa28ea1d1bc0/d2ra01348g-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57b4/9016742/401734d916f6/d2ra01348g-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57b4/9016742/718adcb05373/d2ra01348g-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57b4/9016742/7f9f25f55797/d2ra01348g-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57b4/9016742/00707918ee8b/d2ra01348g-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57b4/9016742/7a02a87e38bf/d2ra01348g-s2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57b4/9016742/0fcb0f95a1b7/d2ra01348g-s3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57b4/9016742/bf685674c838/d2ra01348g-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57b4/9016742/6652d552c51c/d2ra01348g-f10.jpg

相似文献

[1]
MNP-cellulose-OSOH as an efficient and biodegradable heterogeneous catalyst for green synthesis of trisubstituted imidazoles.

RSC Adv. 2022-4-19

[2]
Synthesis of some Novel Imidazoles Catalyzed by Co3O4 Nanoparticles and Evaluation of their Antibacterial Activities.

Comb Chem High Throughput Screen. 2018

[3]
Magnetic polyborate nanoparticles as a green and efficient catalyst for one-pot four-component synthesis of highly substituted imidazole derivatives.

RSC Adv. 2023-6-1

[4]
Preparation and Characterization of NiCoFe2O4 Nanoparticles as an Effective Catalyst for the Synthesis of Trisubstituted Imidazole Derivatives Under Solvent-free Conditions.

Acta Chim Slov. 2022-12-15

[5]
An efficient and green one-pot synthesis of tetrahydrobenzo[a]xanthenes, 1,8-dioxo-octahydroxanthenes and dibenzo[a,j]xanthenes by FeO@Agar-Ag as nanocatalyst.

Mol Divers. 2022-10

[6]
Synthesis of a bistriazolyl-phenanthroline-Cu(ii) complex immobilized on nanomagnetic iron oxide as a novel green catalyst for synthesis of imidazoles annulation reactions.

Nanoscale Adv. 2023-9-29

[7]
Novel biocompatible core/shell FeO@NFC@Co(ii) as a new catalyst in a multicomponent reaction: an efficient and sustainable methodology and novel reusable material for one-pot synthesis of 4-pyran and pyranopyrazole in aqueous media.

RSC Adv. 2020-10-8

[8]
An efficient and eco-compatible multicomponent synthesis of 2,4,5-trisubstituted imidazole derivatives using modified-silica-coated cobalt ferrite nanoparticles with tungstic acid.

Dalton Trans. 2023-1-31

[9]
Magnetite Nanoparticles-Supported APTES as a Powerful and Recoverable Nanocatalyst for the Preparation of 2-Amino-5,10-dihydro- 5,10-dioxo-4H-benzo[g]chromenes and Tetrahydrobenzo[g]quinoline-5,10- diones.

Comb Chem High Throughput Screen. 2017

[10]
Introduction of a trinuclear manganese(iii) catalyst on the surface of magnetic cellulose as an eco-benign, efficient and reusable novel heterogeneous catalyst for the multi-component synthesis of new derivatives of xanthene.

RSC Adv. 2021-1-21

引用本文的文献

[1]
A Novel Recyclable Magnetic Nano-Catalyst for Fenton-Photodegradation of Methyl Orange and Imidazole Derivatives Catalytic Synthesis.

Polymers (Basel). 2024-1-1

[2]
Synthesis of pyrazolo[5',1':2,3]imidazo[1,5-]quinazolin-6(5)-ones and molecular docking study of their affinity against the COVID-19 main protease.

RSC Adv. 2022-7-8

[3]
Ni NPs entrapped within a matrix of l-glutamic acid cross-linked chitosan supported on magnetic carboxylic acid-functionalized multi-walled carbon nanotube: a new and efficient multi-task catalytic system for the green one-pot synthesis of diverse heterocyclic frameworks.

RSC Adv. 2022-6-7

本文引用的文献

[1]
ZnO nanoparticles supported on dendritic fibrous nanosilica as efficient catalysts for the one-pot synthesis of quinazoline-2,4(1,3)-diones.

RSC Adv. 2021-11-17

[2]
CoAl-LDHs@FeO decorated with cobalt nanowires and cobalt nanoparticles for a heterogeneous electro-Fenton process to degrade 1-hydroxyethane-1,1-diphosphonic acid and glyphosate.

RSC Adv. 2022-1-20

[3]
Synthesis of a novel superabsorbent with slow-release urea fertilizer using modified cellulose as a grafting agent and flexible copolymer.

Int J Biol Macromol. 2021-7-1

[4]
Synthesis of Ag-FeO Nanoparticles Immobilized on Pure Cellulose Microspheres as Recyclable and Biodegradable Catalysts.

ACS Omega. 2020-4-10

[5]
Unexpected Synthesis, Properties, and Nonvolatile Memory Device Application of Imidazole-Fused Azaacenes.

J Org Chem. 2020-1-3

[6]
Synthesis of 1,2,4-Trisubstituted-(1)-imidazoles through Cu(OTf)-/I-Catalyzed C-C Bond Cleavage of Chalcones and Benzylamines.

ACS Omega. 2018-7-19

[7]
Synthesis of 5-(4-(1H-phenanthro[9,10-d]imidazol-2-yl)benzylidene)thiazolidine-2,4-dione as promising DNA and serum albumin-binding agents and evaluation of antitumor activity.

Eur J Med Chem. 2019-1-26

[8]
Multicomponent reactions in drug discovery and medicinal chemistry.

Drug Discov Today Technol. 2018-11

[9]
Reactions of Cyclometalated Platinum(II) [Pt(NC)(PR)Cl] Complexes with Imidazole and Imidazole-Containing Biomolecules: Fine-Tuning of Reactivity and Photophysical Properties via Ligand Design.

Inorg Chem. 2019-1-7

[10]
Ru nanoparticles dispersed on magnetic yolk-shell nanoarchitectures with FeO core and sulfoacid-containing periodic mesoporous organosilica shell as bifunctional catalysts for direct conversion of cellulose to isosorbide.

Nanoscale. 2018-2-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索