文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Ni NPs entrapped within a matrix of l-glutamic acid cross-linked chitosan supported on magnetic carboxylic acid-functionalized multi-walled carbon nanotube: a new and efficient multi-task catalytic system for the green one-pot synthesis of diverse heterocyclic frameworks.

作者信息

Hasanpour Galehban Morteza, Zeynizadeh Behzad, Mousavi Hossein

机构信息

Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran

出版信息

RSC Adv. 2022 Jun 7;12(26):16454-16478. doi: 10.1039/d1ra08454b. eCollection 2022 Jun 1.


DOI:10.1039/d1ra08454b
PMID:35754864
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9171750/
Abstract

In the present study, a new l-glutamic acid cross-linked chitosan supported on magnetic carboxylic acid-functionalized multi-walled carbon nanotube (FeO/-MWCNT-CS-Glu) nanocomposite was prepared through a convenient one-pot multi-component sequential strategy. Then, nickel nanoparticles (Ni NPs) were entrapped within a matrix of the mentioned nanocomposite. Afterward, the structure of the as-prepared FeO/-MWCNT-CS-Glu/Ni nanosystem was elucidated by various techniques, including FT-IR, PXRD, SEM, TEM, SEM-based EDX and elemental mapping, ICP-OES, TGA/DTA, and VSM. In the next part of this research, the catalytic applications of the mentioned nickel-containing magnetic nanocomposite were assessed upon green one-pot synthesis of diverse heterocyclic frameworks, including bis-coumarins (3a-n), 2-aryl(or heteroaryl)-2,3-dihydroquinazolin-4(1)-ones (5a-r), 9-aryl-3,3,6,6-tetramethyl-3,4,5,6,7,9-hexahydro-1-xanthene-1,8(2)-diones (7a-n), and 2-amino-4-aryl-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4-chromene-3-carbonitriles (9a-n). The good-to-excellent yields of the desired products, satisfactory reaction rates, use of water solvent or solvent-free reaction medium, acceptable turnover numbers (TONs) and turnover frequencies (TOFs), along with comfortable recoverability and satisfying reusability of the as-prepared nanocatalyst for at least eight successive runs, and also easy work-up and purification procedures are some of the advantages of the current synthetic protocols.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb97/9171750/7c1b88c45ca0/d1ra08454b-f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb97/9171750/b190f33698b5/d1ra08454b-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb97/9171750/0be56d7580ad/d1ra08454b-s1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb97/9171750/906e7f01f741/d1ra08454b-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb97/9171750/cc5ecfe4c890/d1ra08454b-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb97/9171750/5bfdf608ce01/d1ra08454b-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb97/9171750/3f6b7b118499/d1ra08454b-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb97/9171750/dfe5faebb2be/d1ra08454b-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb97/9171750/8858a6659c5c/d1ra08454b-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb97/9171750/2d1579f4f722/d1ra08454b-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb97/9171750/516e05280f98/d1ra08454b-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb97/9171750/0ad2e87ef3e2/d1ra08454b-s2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb97/9171750/d14142a46496/d1ra08454b-s3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb97/9171750/75720ae60305/d1ra08454b-s4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb97/9171750/841a0b5353be/d1ra08454b-s5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb97/9171750/340a5dc4cfd3/d1ra08454b-s6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb97/9171750/445c9b1d487b/d1ra08454b-s7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb97/9171750/5a0406d876fe/d1ra08454b-s8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb97/9171750/010972ee6627/d1ra08454b-s9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb97/9171750/6cb31ff7708a/d1ra08454b-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb97/9171750/374c31d347d7/d1ra08454b-f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb97/9171750/7c1b88c45ca0/d1ra08454b-f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb97/9171750/b190f33698b5/d1ra08454b-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb97/9171750/0be56d7580ad/d1ra08454b-s1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb97/9171750/906e7f01f741/d1ra08454b-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb97/9171750/cc5ecfe4c890/d1ra08454b-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb97/9171750/5bfdf608ce01/d1ra08454b-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb97/9171750/3f6b7b118499/d1ra08454b-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb97/9171750/dfe5faebb2be/d1ra08454b-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb97/9171750/8858a6659c5c/d1ra08454b-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb97/9171750/2d1579f4f722/d1ra08454b-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb97/9171750/516e05280f98/d1ra08454b-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb97/9171750/0ad2e87ef3e2/d1ra08454b-s2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb97/9171750/d14142a46496/d1ra08454b-s3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb97/9171750/75720ae60305/d1ra08454b-s4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb97/9171750/841a0b5353be/d1ra08454b-s5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb97/9171750/340a5dc4cfd3/d1ra08454b-s6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb97/9171750/445c9b1d487b/d1ra08454b-s7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb97/9171750/5a0406d876fe/d1ra08454b-s8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb97/9171750/010972ee6627/d1ra08454b-s9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb97/9171750/6cb31ff7708a/d1ra08454b-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb97/9171750/374c31d347d7/d1ra08454b-f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb97/9171750/7c1b88c45ca0/d1ra08454b-f12.jpg

相似文献

[1]
Ni NPs entrapped within a matrix of l-glutamic acid cross-linked chitosan supported on magnetic carboxylic acid-functionalized multi-walled carbon nanotube: a new and efficient multi-task catalytic system for the green one-pot synthesis of diverse heterocyclic frameworks.

RSC Adv. 2022-6-7

[2]
Ni-containing l-glutamic acid cross-linked chitosan anchored on FeO/-MWCNT: a sustainable catalyst for the green reduction and one-pot two-step reductive Schotten-Baumann-type acetylation of nitroarenes.

Nanoscale Adv. 2024-6-25

[3]
Diverse and efficient catalytic applications of new cockscomb flower-like FeO@SiO@KCC-1@MPTMS@Cu mesoporous nanocomposite in the environmentally benign reduction and reductive acetylation of nitroarenes and one-pot synthesis of some coumarin compounds.

RSC Adv. 2022-4-20

[4]
Immobilized nickel boride nanoparticles on magnetic functionalized multi-walled carbon nanotubes: a new nanocomposite for the efficient one-pot synthesis of 1,4-benzodiazepines.

Nanoscale Adv. 2023-8-9

[5]
Magnetite Nanoparticles-Supported APTES as a Powerful and Recoverable Nanocatalyst for the Preparation of 2-Amino-5,10-dihydro- 5,10-dioxo-4H-benzo[g]chromenes and Tetrahydrobenzo[g]quinoline-5,10- diones.

Comb Chem High Throughput Screen. 2017

[6]
Preparation and characterization of the -BN/FeO/APTES-AMF/Cu nanocomposite as a new and efficient catalyst for the one-pot three-component synthesis of 2-amino-4-aryl(or heteroaryl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4-chromene-3-carbonitriles.

Nanoscale. 2023-2-16

[7]
Magnetic poly(1,8-diaminonaphthalene)-nickel nanocatalyst for the synthesis of antioxidant and antibacterial isoxazole-5(4)-ones derivatives.

Heliyon. 2023-5-4

[8]
Pd Nanocatalyst Adorned on Magnetic Chitosan@-Heterocyclic Carbene: Eco-Compatible Suzuki Cross-Coupling Reaction.

Molecules. 2019-8-22

[9]
Polythiophene-functionalized magnetic carbon nanotube-supported copper(I) complex: a novel and retrievable heterogeneous catalyst for the "Phosphine- and Palladium-Free" Suzuki-Miyaura cross-coupling reaction.

Mol Divers. 2020-11

[10]
An efficient and green one-pot synthesis of tetrahydrobenzo[a]xanthenes, 1,8-dioxo-octahydroxanthenes and dibenzo[a,j]xanthenes by FeO@Agar-Ag as nanocatalyst.

Mol Divers. 2022-10

引用本文的文献

[1]
Magnetically recoverable FeO@chitosan@NiB: a bio-based catalyst for one-pot green and efficient synthesis of tetrahydrobenzo[]pyrans.

Nanoscale Adv. 2025-5-9

[2]
Green procedures for synthesizing potential NMDA receptor allosteric modulators through reduction and one-pot reductive acetylation of nitro(hetero)arenes using a superparamagnetic FeO@APTMS@CpZrCl nanocatalyst.

Nanoscale Adv. 2025-3-10

[3]
A new strategy for immobilization of copper on the FeO@EDTA nanocomposite and its efficient catalytic applications in reduction and one-pot reductive acetylation of nitroarenes and also -acetylation of arylamines.

Heliyon. 2024-7-26

[4]
Ni-containing l-glutamic acid cross-linked chitosan anchored on FeO/-MWCNT: a sustainable catalyst for the green reduction and one-pot two-step reductive Schotten-Baumann-type acetylation of nitroarenes.

Nanoscale Adv. 2024-6-25

[5]
Immobilized nickel boride nanoparticles on magnetic functionalized multi-walled carbon nanotubes: a new nanocomposite for the efficient one-pot synthesis of 1,4-benzodiazepines.

Nanoscale Adv. 2023-8-9

[6]
Biofuels and Nanocatalysts: Python Boosting Visualization of Similarities.

Materials (Basel). 2023-1-30

[7]
Sulfamic acid grafted to cross-linked chitosan by dendritic units: a bio-based, highly efficient and heterogeneous organocatalyst for green synthesis of 2,3-dihydroquinazoline derivatives.

RSC Adv. 2022-12-21

本文引用的文献

[1]
Chemoselective reduction of nitro and nitrile compounds using an FeO-MWCNTs@PEI-Ag nanocomposite as a reusable catalyst.

RSC Adv. 2020-1-22

[2]
Tetrazol-Cu(i) immobilized on nickel ferrite catalyzed green synthesis of indenopyridopyrimidine derivatives in aqueous media.

RSC Adv. 2021-9-22

[3]
Sonochemistry in an organocatalytic domino reaction: an expedient multicomponent access to structurally functionalized dihydropyrano[3,2-]pyrans, spiro-pyrano[3,2-]pyrans, and spiro-indenoquinoxaline-pyranopyrans under ambient conditions.

RSC Adv. 2022-4-28

[4]
MNP-cellulose-OSOH as an efficient and biodegradable heterogeneous catalyst for green synthesis of trisubstituted imidazoles.

RSC Adv. 2022-4-19

[5]
A novel superparamagnetic powerful guanidine-functionalized γ-FeO based sulfonic acid recyclable and efficient heterogeneous catalyst for microwave-assisted rapid synthesis of quinazolin-4(3)-one derivatives in Green media.

RSC Adv. 2021-9-7

[6]
Aminomalononitrile inspired prebiotic chemistry as a novel multicomponent tool for the synthesis of imidazole and purine derivatives with anti-influenza A virus activity.

RSC Adv. 2021-9-8

[7]
Zr@IL-FeO MNPs as an efficient and green heterogeneous magnetic nanocatalyst for the one-pot three-component synthesis of highly substituted pyran derivatives under solvent-free conditions.

RSC Adv. 2021-7-5

[8]
Robust, highly active, and stable supported Co(ii) nanoparticles on magnetic cellulose nanofiber-functionalized for the multi-component reactions of piperidines and alcohol oxidation.

RSC Adv. 2021-7-1

[9]
Magnetically recoverable catalysts for the preparation of pyridine derivatives: an overview.

RSC Adv. 2021-5-13

[10]
Synthesis, characterization and cytotoxicity evaluation of a novel magnetic nanocomposite with iron oxide deposited on cellulose nanofibers with nickel (FeO@NFC@ONSM-Ni).

RSC Adv. 2021-5-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索