Suppr超能文献

非洲爪蟾蝌蚪(非洲爪蟾,无尾目:负子蟾科)的空气呼吸机制。

The mechanics of air breathing in African clawed frog tadpoles, Xenopus laevis (Anura: Pipidae).

作者信息

Phillips Jackson R, Hewes Amanda E, Womack Molly C, Schwenk Kurt

机构信息

Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269-3043, USA.

出版信息

J Exp Biol. 2022 May 15;225(10). doi: 10.1242/jeb.243102. Epub 2022 May 16.

Abstract

Frog larvae (tadpoles) undergo many physiological, morphological and behavioral transformations throughout development before metamorphosing into their adult form. The surface tension of water prevents small tadpoles from breaching the surface to breathe air (including those of Xenopus laevis), forcing them to acquire air using a form of breathing called bubble sucking. With growth, tadpoles typically make a behavioral/biomechanical transition from bubble sucking to breaching. Xenopus laevis tadpoles have also been shown to transition physiologically from conforming passively to ambient oxygen levels to actively regulating their blood oxygen. However, it is unknown whether these mechanical and physiological breathing transitions are temporally or functionally linked, or how both transitions relate to lung maturation and gas exchange competency. If these transitions are linked, it could mean that one biomechanical breathing mode (breaching) is more physiologically proficient at acquiring gaseous oxygen than the other. Here, we describe the mechanics and development of air breathing and the ontogeny of lung morphology in X. laevis throughout the larval stage and examine our findings considering previous physiological work. We found that the transitions from bubble sucking to breaching and from oxygen conforming to oxygen regulation co-occur in X. laevis tadpoles at the same larval stage (Nieuwkoop-Faber stages 53-56 and 54-57, respectively), but that the lungs do not increase significantly in vascularization until metamorphosis, suggesting that lung maturation, alone, is not sufficient to account for increased pulmonary capacity earlier in development. Although breach breathing may confer a respiratory advantage, we remain unaware of a mechanistic explanation to account for this possibility. At present, the transition from bubble sucking to breaching appears simply to be a consequence of growth. Finally, we consider our results in the context of comparative air-breathing mechanics across vertebrates.

摘要

蛙类幼虫(蝌蚪)在发育成成体之前,在整个发育过程中会经历许多生理、形态和行为上的转变。水的表面张力阻止小蝌蚪突破水面呼吸空气(包括非洲爪蟾的蝌蚪),迫使它们通过一种叫做气泡吸食的呼吸方式获取空气。随着生长,蝌蚪通常会从气泡吸食到突破水面进行行为/生物力学转变。非洲爪蟾蝌蚪也被证明在生理上从被动顺应环境氧气水平转变为主动调节血液中的氧气。然而,尚不清楚这些机械和生理呼吸转变在时间上或功能上是否相关,以及这两种转变如何与肺成熟和气体交换能力相关。如果这些转变相关,这可能意味着一种生物力学呼吸模式(突破水面呼吸)在获取气态氧气方面比另一种模式在生理上更高效。在这里,我们描述了非洲爪蟾在整个幼虫阶段空气呼吸的力学和发育以及肺形态的个体发育,并结合之前的生理学研究来审视我们的发现。我们发现,从气泡吸食到突破水面呼吸以及从氧气顺应到氧气调节的转变在非洲爪蟾蝌蚪的同一幼虫阶段同时发生(分别为Nieuwkoop - Faber阶段53 - 56和54 - 57),但直到变态时肺血管化才显著增加,这表明仅肺成熟不足以解释发育早期肺容量的增加。尽管突破水面呼吸可能具有呼吸优势,但我们仍然不知道对此可能性的机理解释。目前,从气泡吸食到突破水面呼吸的转变似乎仅仅是生长的结果。最后,我们在脊椎动物比较空气呼吸力学的背景下考虑我们的结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验