Theoretical Biology and Bioinformatics, Department of Biology, Science Faculty, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
Genome Biol Evol. 2022 May 3;14(5). doi: 10.1093/gbe/evac056.
Many questions remain about the interplay between adaptive and neutral processes leading to genome expansion and the evolution of cellular complexity. Genome size appears to be tightly linked to the size of the regulatory repertoire of cells (van Nimwegen E. 2003. Scaling laws in the functional content of genomes. Trends Gen. 19(9):479-484). In the context of gene regulation, we here study the interplay between adaptive and nonadaptive forces on genome and regulatory network in a computational model of cell-cycle adaptation to different environments. Starting from the well-known Caulobacter crescentus network, we report on ten replicate in silico evolution experiments where cells evolve cell-cycle control by adapting to increasingly harsh spatial habitats. We find adaptive expansion of the regulatory repertoire of cells. Having a large genome is inherently costly, but also allows for improved cell-cycle behavior. Replicates traverse different evolutionary trajectories leading to distinct eco-evolutionary strategies. In four replicates, cells evolve a generalist strategy to cope with a variety of nutrient levels; in two replicates, different specialist cells evolve for specific nutrient levels; in the remaining four replicates, an intermediate strategy evolves. These diverse evolutionary outcomes reveal the role of contingency in a system under strong selective forces. This study shows that functionality of cells depends on the combination of regulatory network topology and genome organization. For example, the positions of dosage-sensitive genes are exploited to signal to the regulatory network when replication is completed, forming a de novo evolved cell cycle checkpoint. Our results underline the importance of the integration of multiple organizational levels to understand complex gene regulation and the evolution thereof.
许多问题仍然存在于导致基因组扩张和细胞复杂性进化的适应和中性过程之间的相互作用。基因组大小似乎与细胞的调控 repertoire 的大小紧密相关(van Nimwegen E. 2003. Scaling laws in the functional content of genomes. Trends Gen. 19(9):479-484)。在基因调控的背景下,我们在这里研究了在细胞周期适应不同环境的计算模型中,基因组和调控网络上的适应和非适应力量之间的相互作用。从著名的新月柄杆菌网络开始,我们报告了十个重复的计算机进化实验,其中细胞通过适应日益恶劣的空间栖息地来进化细胞周期控制。我们发现细胞的调控 repertoire 适应性扩张。拥有大基因组本身是有代价的,但也允许改善细胞周期行为。重复经历不同的进化轨迹,导致不同的生态进化策略。在四个重复中,细胞进化出一种通用策略来应对各种营养水平;在两个重复中,不同的专业细胞为特定的营养水平进化;在其余四个重复中,进化出一种中间策略。这些不同的进化结果揭示了在强选择压力下系统中偶然因素的作用。本研究表明,细胞的功能取决于调控网络拓扑和基因组组织的组合。例如,利用剂量敏感基因的位置来向调控网络发出信号,表明复制已经完成,形成一个新进化的细胞周期检查点。我们的结果强调了整合多个组织层次来理解复杂基因调控及其进化的重要性。