Suppr超能文献

使用深度学习对接受数字减影血管造影的急性中风患者进行动脉标志和血管闭塞的自动检测。

Automated detection of arterial landmarks and vascular occlusions in patients with acute stroke receiving digital subtraction angiography using deep learning.

作者信息

Khankari Jui, Yu Yannan, Ouyang Jiahong, Hussein Ramy, Do Huy M, Heit Jeremy J, Zaharchuk Greg

机构信息

Department of Radiology, Stanford University, Stanford, California, USA.

Department of Electrical Engineering, Stanford University, Stanford, California, USA.

出版信息

J Neurointerv Surg. 2023 Jun;15(6):521-525. doi: 10.1136/neurintsurg-2021-018638. Epub 2022 Apr 28.

Abstract

BACKGROUND

Digital subtraction angiography (DSA) is the gold-standard method of assessing arterial blood flow and blockages prior to endovascular thrombectomy.

OBJECTIVE

To detect anatomical features and arterial occlusions with DSA using artificial intelligence techniques.

METHODS

We included 82 patients with acute ischemic stroke who underwent DSA imaging and whose carotid terminus was visible in at least one run. Two neurointerventionalists labeled the carotid location (when visible) and vascular occlusions on 382 total individual DSA runs. For detecting the carotid terminus, positive and negative image patches (either containing or not containing the internal carotid artery terminus) were extracted in a 1:1 ratio. Two convolutional neural network architectures (ResNet-50 pretrained on ImageNet and ResNet-50 trained from scratch) were evaluated. Area under the curve (AUC) of the receiver operating characteristic and pixel distance from the ground truth were calculated. The same training and analysis methods were used for detecting arterial occlusions.

RESULTS

The ResNet-50 trained from scratch most accurately detected the carotid terminus (AUC 0.998 (95% CI 0.997 to 0.999), p<0.00001) and arterial occlusions (AUC 0.973 (95% CI 0.971 to 0.975), p<0.0001). Average pixel distances from ground truth for carotid terminus and occlusion localization were 63±45 and 98±84, corresponding to approximately 1.26±0.90 cm and 1.96±1.68 cm for a standard angiographic field-of-view.

CONCLUSION

These results may serve as an unbiased standard for clinical stroke trials, as optimal standardization would be useful for core laboratories in endovascular thrombectomy studies, and also expedite decision-making during DSA-based procedures.

摘要

背景

数字减影血管造影(DSA)是在血管内血栓切除术之前评估动脉血流和阻塞情况的金标准方法。

目的

使用人工智能技术通过DSA检测解剖特征和动脉闭塞情况。

方法

我们纳入了82例接受DSA成像且至少一次扫描中颈动脉末端可见的急性缺血性卒中患者。两名神经介入专家在总共382次单独的DSA扫描中标记了颈动脉位置(可见时)和血管闭塞情况。为了检测颈动脉末端,以1:1的比例提取了正性和负性图像块(分别包含或不包含颈内动脉末端)。评估了两种卷积神经网络架构(在ImageNet上预训练的ResNet-50和从头开始训练的ResNet-50)。计算了受试者操作特征曲线下面积(AUC)以及与真实情况的像素距离。使用相同的训练和分析方法来检测动脉闭塞情况。

结果

从头开始训练的ResNet-50最准确地检测到了颈动脉末端(AUC 0.998(95%CI 0.997至0.999),p<0.00001)和动脉闭塞情况(AUC 0.973(95%CI 0.971至0.975),p<0.0001)。颈动脉末端和闭塞定位与真实情况的平均像素距离分别为63±45和98±84,对于标准血管造影视野,分别对应约1.26±0.90 cm和1.96±1.68 cm。

结论

这些结果可作为临床卒中试验的无偏标准,因为最佳标准化对于血管内血栓切除术研究的核心实验室很有用,并且还能加快基于DSA的手术过程中的决策制定。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验