Zhang Dongshi, Liu Ruijie, Ji Sihan, Cai Yunyu, Liang Changhao, Li Zhuguo
Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
ACS Appl Mater Interfaces. 2022 Apr 28. doi: 10.1021/acsami.2c04523.
Oxygen-vacancy-rich WO absorbers are gaining increasing attention because of their extensive absorbance-based applications in near-infrared shielding, photocatalysis, sterilization, interfacial evaporator and electrochromic, photochromic, and photothermal fields. Thermal treatment in an oxygen-deficient atmosphere enables us to prepare WO but lacks the capacity for finely manipulating the grown structures. In this work, we present that laser-induced periodic surface structure (LIPSS) obtained by femtosecond laser ablation is a good template to grow various hierarchical WO ultrabroadband absorbers and photothermal converters by thermal oxidation annealing in air. Increasing annealing temperature from 600 to 1000 °C allows the manipulation of WO crystal sizes from ∼70 nm to ∼4 μm, accompanied by a color transition from brown to dark blue and finally to yellow. Benefiting from annealing-induced surface cracks and phase transition into WO (containing both WO and WO) at 600 °C, excellent UV-vis-NIR-MIR ultrabroadband absorbers were produced: >90% UV-NIR absorbance (0.3-2.5 μm) and 50-90% MIR absorbance (2.5-16 μm), much better than most W-based metamaterial absorbers. The higher the annealing temperature (1000 > 800 > 600 °C), the better the photothermal performances (sample temperature as the indicator) of annealed interfaces due to the increased oxidation rates and resultant thicker oxide layers (6, 150, and 507 μm), a trend which is more apparent upon the irradiation of high-density (3160 mW/cm) and ultrabroadband (200-2500 nm) light but much less apparent for shorter-band (200-800, 420-800, 800-2500 nm, etc.) and less-intensity (1694, 1540, 1460 mW/cm, etc.) light irradiation. This phenomenon indicates that (1) higher-performance ultrabroadband absorbers possess a higher photothermal conversion capacity; (2) thicker-WO oxide layer converters are more effective in preserving photothermal heat; and (3) both the W-LIPSS and metal tungsten substrate can quickly dissipate the photothermal heat to inhibit heat accumulation in the oxide photothermal converters. It is also proved that ablation-induced high-pressure shockwaves can produce deformation layers in the subsurfaces to release annealing-induced stresses, beneficial for the formation of less-cracked non-stoichiometric WO interfaces upon annealing. High-pressure shockwaves are also capable of inducing grain refinement of LIPSS, which facilitates a homogeneous growth of small non-stoichiometric metal-oxide crystals upon annealing. Our results indicate that femtosecond laser ablation is a convenient upstream template-fabrication technique compatible with the thermal oxidation annealing method to develop advanced functional oxygen-vacancy metal-oxide interfaces.
富含氧空位的WO吸收体因其在近红外屏蔽、光催化、杀菌、界面蒸发器以及电致变色、光致变色和光热领域基于吸光度的广泛应用而受到越来越多的关注。在缺氧气氛中进行热处理能够制备WO,但缺乏对生长结构进行精细调控的能力。在这项工作中,我们提出通过飞秒激光烧蚀获得的激光诱导周期性表面结构(LIPSS)是在空气中通过热氧化退火生长各种分级WO超宽带吸收体和光热转换器的良好模板。将退火温度从600℃提高到1000℃可使WO晶体尺寸从约70nm调控至约4μm,同时伴随着颜色从棕色转变为深蓝色,最终变为黄色。受益于退火诱导的表面裂纹以及在600℃时向WO(同时包含WO和WO)的相变,制备出了优异的紫外-可见-近红外-中红外超宽带吸收体:紫外-近红外吸光度(0.3 - 2.5μm)>90%,中红外吸光度(2.5 - 16μm)为50 - 90%,远优于大多数基于W的超材料吸收体。退火温度越高(1000 > 800 > 600℃),退火界面的光热性能(以样品温度为指标)越好,这是由于氧化速率增加以及生成的氧化层更厚(6、150和507μm),这种趋势在高密度(3160 mW/cm)和超宽带(200 - 2500 nm)光照射下更为明显,但在短波段(200 - 800、420 - 800、800 - 2500 nm等)和低强度(1694、1540、1460 mW/cm等)光照射下则不太明显。这一现象表明:(1)高性能的超宽带吸收体具有更高的光热转换能力;(2)更厚的WO氧化层转换器在保存光热热量方面更有效;(3)W - LIPSS和金属钨基底都能快速消散光热以抑制氧化物光热转换器中的热量积累。还证明了烧蚀诱导的高压冲击波可在次表面产生变形层以释放退火诱导的应力,有利于在退火时形成裂纹较少的非化学计量WO界面。高压冲击波还能够诱导LIPSS的晶粒细化,这有助于在退火时均匀生长小的非化学计量金属氧化物晶体。我们的结果表明,飞秒激光烧蚀是一种方便的上游模板制备技术,与热氧化退火方法兼容,可用于开发先进的功能性氧空位金属氧化物界面。