Suppr超能文献

具有等离子体活性和超疏水性的纳米结构表面:制备策略与应用综述

Nanostructured Surfaces with Plasmonic Activity and Superhydrophobicity: Review of Fabrication Strategies and Applications.

作者信息

Ruzi Mahmut, Celik Nusret, Sahin Furkan, Sakir Menekse, Onses M Serdar

机构信息

ERNAM - Erciyes University Nanotechnology Application and Research Center, Kayseri, 38039, Turkey.

Department of Materials Science and Engineering, Erciyes University, Kayseri, 38039, Turkey.

出版信息

Small. 2025 Feb;21(6):e2408189. doi: 10.1002/smll.202408189. Epub 2025 Jan 5.

Abstract

Plasmonics and superhydrophobicity have garnered broad interest from academics and industry alike, spanning fundamental scientific inquiry and practical technological applications. Plasmonic activity and superhydrophobicity rely heavily on nanostructured surfaces, providing opportunities for their mutually beneficial integration. Engineering surfaces at microscopic and nanoscopic length scales is necessary to achieve superhydrophobicity and plasmonic activity. However, the dissimilar surface energies of materials commonly used in fabricating plasmonic and superhydrophobic surfaces and different length scales pose various challenges to harnessing their properties in synergy. In this review, an overview of various techniques and materials that researchers have developed over the years to overcome this challenge is provided. The underlying mechanisms of both plasmonics and superhydrophobicity are first overviewed. Next, a general classification scheme is introduced for strategies to achieve plasmonic and superhydrophobic properties. Following that, applications of multifunctional plasmonic and superhydrophobic surfaces are presented. Lastly, a future perspective is presented, highlighting shortcomings, and opportunities for new directions.

摘要

等离子体激元学和超疏水性已引起学术界和工业界的广泛关注,涵盖基础科学探究和实际技术应用。等离子体激元活性和超疏水性在很大程度上依赖于纳米结构表面,这为它们的互利整合提供了机会。在微观和纳米尺度上对表面进行工程设计对于实现超疏水性和等离子体激元活性是必要的。然而,用于制造等离子体激元和超疏水表面的常用材料具有不同的表面能,且长度尺度各异,这给协同利用它们的特性带来了各种挑战。在这篇综述中,概述了研究人员多年来为克服这一挑战而开发的各种技术和材料。首先概述了等离子体激元学和超疏水性的潜在机制。接下来,引入了一个通用的分类方案,用于实现等离子体激元和超疏水特性的策略。随后,介绍了多功能等离子体激元和超疏水表面的应用。最后,给出了未来展望,突出了缺点以及新方向的机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afeb/11817952/6dcfb0e17721/SMLL-21-2408189-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验