Suppr超能文献

基于特权信息的集成深度随机向量函数链接网络在阿尔茨海默病诊断中的应用。

Ensemble Deep Random Vector Functional Link Network Using Privileged Information for Alzheimer's Disease Diagnosis.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2024 Jul-Aug;21(4):534-545. doi: 10.1109/TCBB.2022.3170351. Epub 2024 Aug 8.

Abstract

Alzheimer's disease (AD) is a progressive brain disorder. Machine learning models have been proposed for the diagnosis of AD at early stage. Recently, deep learning architectures have received quite a lot attention. Most of the deep learning architectures suffer from the issues of local minima, slow convergence and sensitivity to learning rate. To overcome these issues, non-iterative learning based deep randomized models especially random vector functional link network (RVFL) with direct links have proven to be successful. However, deep RVFL and its ensemble models are trained only on normal samples. In this paper, deep RVFL and its ensembles are enabled to incorporate privileged information, as the standard RVFL model and its deep models are unable to use privileged information. To fill this gap, we have incorporated learning using privileged information (LUPI) in deep RVFL model, and propose deep RVFL with LUPI framework (dRVFL+). Privileged information is available while training the models. As RVFL is an unstable classifier, we propose ensemble deep RVFL+ with LUPI framework (edRVFL+) which exploits the LUPI as well as the diversity among the base leaners for better classification. Unlike traditional ensemble approach wherein multiple base learners are trained, the proposed edRVFL+ model optimises a single network and generates an ensemble via optimization at different levels of random projections of the data. Both dRVFL+ and edRVFL+ efficiently utilise the privileged information which results in better generalization performance. In LUPI framework, half of the available features are used as normal features and rest as the privileged features. However, we propose a novel approach for generating the privileged information. We utilise different activation functions while processing the normal and privileged information in the proposed deep architectures. To the best of our knowledge, this is first time that a separate privileged information is generated. The proposed dRVFL+ and edRVFL+ models are employed for the diagnosis of Alzheimer's disease. Experimental results demonstrate the superiority of the proposed dRVFL+ and edRVFL+ models over baseline models. Thus, the proposed edRVFL+ model can be utilised in clinical setting for the diagnosis of AD.

摘要

阿尔茨海默病(AD)是一种进行性的大脑疾病。已经提出了机器学习模型来进行 AD 的早期诊断。最近,深度学习架构受到了相当多的关注。大多数深度学习架构都存在局部最小值、收敛缓慢和对学习率敏感等问题。为了克服这些问题,基于非迭代学习的深度随机模型,特别是具有直接链接的随机向量功能链接网络(RVFL)已经被证明是成功的。然而,深度 RVFL 及其集成模型仅在正常样本上进行训练。在本文中,深度 RVFL 及其集成模型被赋予了特权信息,因为标准 RVFL 模型及其深度模型无法使用特权信息。为了填补这一空白,我们在深度 RVFL 模型中加入了使用特权信息的学习(LUPI),并提出了具有 LUPI 的深度 RVFL 框架(dRVFL+)。在训练模型时就可以获得特权信息。由于 RVFL 是一个不稳定的分类器,我们提出了具有 LUPI 的集成深度 RVFL+框架(edRVFL+),该框架利用 LUPI 以及基础学习者之间的多样性来进行更好的分类。与传统的集成方法不同,传统的集成方法中多个基础学习者被训练,而提出的 edRVFL+模型则通过在数据的不同随机投影水平上进行优化来优化单个网络并生成一个集成。dRVFL+和 edRVFL+都有效地利用了特权信息,从而提高了泛化性能。在 LUPI 框架中,一半的可用特征被用作正常特征,其余的被用作特权特征。然而,我们提出了一种生成特权信息的新方法。在提出的深度架构中,我们在处理正常信息和特权信息时使用不同的激活函数。据我们所知,这是第一次生成单独的特权信息。我们将提出的 dRVFL+和 edRVFL+模型应用于阿尔茨海默病的诊断。实验结果表明,提出的 dRVFL+和 edRVFL+模型优于基线模型,具有优越性。因此,提出的 edRVFL+模型可以在临床环境中用于 AD 的诊断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验