Suppr超能文献

通过集成深度随机向量功能链接神经网络进行多模态阿尔茨海默病分类

Multimodal Alzheimer's disease classification through ensemble deep random vector functional link neural network.

作者信息

Henríquez Pablo A, Araya Nicolás

机构信息

Departamento de Administración, Universidad Diego Portales, Santiago, Chile.

Escuela de Informática y Telecomunicaciones, Universidad Diego Portales, Santiago, Chile.

出版信息

PeerJ Comput Sci. 2024 Dec 13;10:e2590. doi: 10.7717/peerj-cs.2590. eCollection 2024.

Abstract

Alzheimer's disease (AD) is a condition with a complex pathogenesis, sometimes hereditary, characterized by the loss of neurons and synapses, along with the presence of senile plaques and neurofibrillary tangles. Early detection, particularly among individuals at high risk, is critical for effective treatment or prevention, yet remains challenging due to data variability and incompleteness. Most current research relies on single data modalities, potentially limiting comprehensive staging of AD. This study addresses this gap by integrating multimodal data-including clinical and genetic information-using deep learning (DL) models, with a specific focus on random vector functional link (RVFL) networks, to enhance early detection of AD and mild cognitive impairment (MCI). Our findings demonstrate that ensemble deep RVFL (edRVFL) models, when combined with effective data imputation techniques such as Winsorized-mean (Wmean), achieve superior performance in detecting early stages of AD. Notably, the edRVFL model achieved an accuracy of 98.8%, precision of 98.3%, recall of 98.4%, and F1-score of 98.2%, outperforming traditional machine learning models like support vector machines, random forests, and decision trees. This underscores the importance of integrating advanced imputation strategies and deep learning techniques in AD diagnosis.

摘要

阿尔茨海默病(AD)是一种发病机制复杂的疾病,有时具有遗传性,其特征是神经元和突触丧失,同时伴有老年斑和神经原纤维缠结。早期检测,尤其是在高危个体中进行早期检测,对于有效治疗或预防至关重要,但由于数据的变异性和不完整性,仍然具有挑战性。目前大多数研究依赖单一数据模式,这可能会限制AD的全面分期。本研究通过使用深度学习(DL)模型整合多模态数据(包括临床和遗传信息)来解决这一差距,特别关注随机向量功能链接(RVFL)网络,以加强对AD和轻度认知障碍(MCI)的早期检测。我们的研究结果表明,集成深度RVFL(edRVFL)模型与诸如 Winsorized均值(Wmean)等有效的数据插补技术相结合时,在检测AD早期阶段具有卓越的性能。值得注意的是,edRVFL模型的准确率达到98.8%,精确率为98.3%,召回率为98.4%,F1分数为98.2%,优于支持向量机、随机森林和决策树等传统机器学习模型。这凸显了在AD诊断中整合先进插补策略和深度学习技术的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fed3/11784893/5db167910e2c/peerj-cs-10-2590-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验