School of Civil & Environmental Engineering, Nanyang Technological University, Singapore.
School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore.
Neural Netw. 2023 Sep;166:51-69. doi: 10.1016/j.neunet.2023.06.042. Epub 2023 Jul 7.
This paper proposes a three-stage online deep learning model for time series based on the ensemble deep random vector functional link (edRVFL). The edRVFL stacks multiple randomized layers to enhance the single-layer RVFL's representation ability. Each hidden layer's representation is utilized for training an output layer, and the ensemble of all output layers forms the edRVFL's output. However, the original edRVFL is not designed for online learning, and the randomized nature of the features is harmful to extracting meaningful temporal features. In order to address the limitations and extend the edRVFL to an online learning mode, this paper proposes a dynamic edRVFL consisting of three online components, the online decomposition, the online training, and the online dynamic ensemble. First, an online decomposition is utilized as a feature engineering block for the edRVFL. Then, an online learning algorithm is designed to learn the edRVFL. Finally, an online dynamic ensemble method, which can measure the change in the distribution, is proposed for aggregating all layers' outputs. This paper evaluates and compares the proposed model with state-of-the-art methods on sixteen time series.
本文提出了一种基于集成深度随机向量功能链接(edRVFL)的三阶段在线深度学习模型,用于时间序列分析。edRVFL 通过堆叠多个随机化层来增强单层 RVFL 的表示能力。每个隐藏层的表示用于训练一个输出层,所有输出层的集合构成 edRVFL 的输出。然而,原始的 edRVFL 并非专为在线学习设计,且特征的随机化性质不利于提取有意义的时间特征。为了解决这些限制并将 edRVFL 扩展到在线学习模式,本文提出了一个由三个在线组件组成的动态 edRVFL,包括在线分解、在线训练和在线动态集成。首先,利用在线分解作为 edRVFL 的特征工程模块。然后,设计了一个在线学习算法来学习 edRVFL。最后,提出了一种在线动态集成方法,用于聚合所有层的输出,并可以衡量分布的变化。本文在十六个时间序列上评估和比较了所提出的模型与最先进方法的性能。