College of Dairy Technology, Sri Venkateswara Veterinary University, Tirupati, Andhra Pradesh 517502, India.
Department of Dairy Microbiology, National Dairy Research Institute, Karnal, Haryana 132001, India.
ACS Appl Mater Interfaces. 2022 May 11;14(18):20652-20668. doi: 10.1021/acsami.2c01385. Epub 2022 Apr 29.
While persistent efforts are being made to develop a novel arsenal against bacterial pathogens, the development of such materials remains a formidable challenge. One such strategy is to develop a multimodel antibacterial agent which will synergistically combat bacterial pathogens, including multidrug-resistant bacteria. Herein, we used pediocin, a class IIa bacteriocin, to decorate Ag° and developed a double-edged nanoplatform (Pd-SNPs) that inherits intrinsic properties of both antibacterial moieties, which engenders strikingly high antibacterial potency against a broad spectrum of bacterial pathogens including the ESKAPE category without displaying adverse cytotoxicity. The enhanced antimicrobial activity of Pd-SNPs is due to their higher affinity with the bacterial cell wall, which allows Pd-SNPs to penetrate the outer membrane, inducing membrane depolarization and the disruption of membrane integrity. Bioreporter assays revealed the upregulation of , , and genes, triggering the burst of reactive oxygen species which eventually cause bacterial cell death. Pd-SNPs prevented biofilm formation, eradicated established biofilms, and inhibited persister cells. Pd-SNPs display unprecedented advantages because they are heat-resistant, retain antibacterial activity in human serum, and alleviate vancomycin intermediate (VISA) infection in the mouse model. In addition, Pd-SNPs wrapped in biodegradable nanofibers mitigated in cheese samples. Collectively, Pd-SNPs exhibited excellent biocompatibility and therapeutic potency without allowing foreseeable resistance acquisition by pathogens. These findings underscore new avenues for using a potent biocompatible nanobiotic platform to combat a wide range of bacterial pathogens.
虽然人们一直在努力开发针对细菌病原体的新型武器库,但开发此类材料仍然是一个艰巨的挑战。一种这样的策略是开发一种多模式抗菌剂,该抗菌剂将协同对抗细菌病原体,包括多药耐药菌。在此,我们使用了一种 IIa 类细菌素(即肠球菌素)来修饰 Ag°,并开发了一种具有双重作用的纳米平台(Pd-SNPs),该平台继承了两种抗菌部分的固有特性,对广谱细菌病原体(包括 ESKAPE 类别)具有极高的抗菌效力,而没有显示出不良的细胞毒性。Pd-SNPs 的增强的抗菌活性归因于它们与细菌细胞壁的更高亲和力,这允许 Pd-SNPs 穿透外膜,诱导膜去极化和破坏膜完整性。生物报告基因测定揭示了 、 和 基因的上调,引发了活性氧的爆发,最终导致细菌细胞死亡。Pd-SNPs 可防止生物膜形成,消除已建立的生物膜,并抑制持久细胞。Pd-SNPs 具有前所未有的优势,因为它们具有耐热性,在人血清中保留抗菌活性,并减轻了小鼠模型中的万古霉素中间耐药性 (VISA)感染。此外,包裹在可生物降解纳米纤维中的 Pd-SNPs 减轻了奶酪样品中的 污染。总之,Pd-SNPs 表现出良好的生物相容性和 治疗效力,而不会使病原体产生可预见的耐药性。这些发现为使用强大的生物相容性纳米生物制剂平台来对抗广泛的细菌病原体提供了新的途径。