Suppr超能文献

在野外奔跑:能量学解释了生态奔跑速度。

Running in the wild: Energetics explain ecological running speeds.

机构信息

School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada; Department of Bioengineering, Stanford University, Stanford, CA, USA.

Department of Bioengineering, Stanford University, Stanford, CA, USA.

出版信息

Curr Biol. 2022 May 23;32(10):2309-2315.e3. doi: 10.1016/j.cub.2022.03.076. Epub 2022 Apr 28.

Abstract

Human runners have long been thought to have the ability to consume a near-constant amount of energy per distance traveled, regardless of speed, allowing speed to be adapted to particular task demands with minimal energetic consequence. However, recent and more precise laboratory measures indicate that humans may in fact have an energy-optimal running speed. Here, we characterize runners' speeds in a free-living environment and determine if preferred speed is consistent with task- or energy-dependent objectives. We analyzed a large-scale dataset of free-living runners, which was collected via a commercial fitness tracking device, and found that individual runners preferred a particular speed that did not change across commonly run distances. We compared the data from lab experiments that measured participants' energy-optimal running speeds with the free-living preferred speeds of age- and gender-matched runners in our dataset and found the speeds to be indistinguishable. Human runners prefer a particular running speed that is independent of task distance and is consistent with the objective of minimizing energy expenditure. Our findings offer an insight into the biological objectives that shape human running preferences in the real world-an important consideration when examining human ecology or creating training strategies to improve performance and prevent injury.

摘要

人类跑步者长期以来被认为具有在不考虑速度的情况下,每跑一定距离消耗近乎恒定能量的能力,从而使速度能够适应特定任务的需求,而不会产生过多的能量后果。然而,最近更精确的实验室测量表明,人类实际上可能具有最佳能量消耗的跑步速度。在这里,我们在自由生活环境中描述跑步者的速度,并确定首选速度是否与任务或能量相关的目标一致。我们分析了一个通过商业健身追踪设备收集的大规模自由生活跑步者数据集,并发现个体跑步者偏爱一种在常见跑步距离内不会改变的特定速度。我们将实验室实验中测量参与者最佳能量消耗跑步速度的数据与我们数据集中年龄和性别匹配的自由生活跑步者的首选速度进行了比较,发现这些速度没有区别。人类跑步者偏爱一种特定的跑步速度,这种速度与任务距离无关,并且与最小化能量消耗的目标一致。我们的研究结果为塑造人类在现实世界中跑步偏好的生物目标提供了深入的了解——在研究人类生态学或制定提高表现和预防受伤的训练策略时,这是一个重要的考虑因素。

相似文献

1
Running in the wild: Energetics explain ecological running speeds.在野外奔跑:能量学解释了生态奔跑速度。
Curr Biol. 2022 May 23;32(10):2309-2315.e3. doi: 10.1016/j.cub.2022.03.076. Epub 2022 Apr 28.
6
Running training and adaptive strategies of locomotor-respiratory coordination.跑步训练与运动-呼吸协调的适应性策略。
Eur J Appl Physiol. 2003 Jun;89(5):435-44. doi: 10.1007/s00421-003-0831-5. Epub 2003 Apr 24.
7
People choose to run at their optimal speed.人们选择以他们的最佳速度奔跑。
Am J Phys Anthropol. 2017 May;163(1):85-93. doi: 10.1002/ajpa.23187. Epub 2017 Feb 14.
9
Minimum cost of transport in human running is not ubiquitous.人类奔跑的最小成本运输并非无处不在。
Med Sci Sports Exerc. 2015 Feb;47(2):307-14. doi: 10.1249/MSS.0000000000000421.
10
Is There an Optimal Speed for Economical Running?经济跑步是否存在最佳速度?
Int J Sports Physiol Perform. 2018 Jan 1;13(1):75-81. doi: 10.1123/ijspp.2017-0015. Epub 2018 Jan 23.

引用本文的文献

5
Disentangling the effects of metabolic cost and accuracy on movement speed.解析代谢成本和准确性对运动速度的影响。
PLoS Comput Biol. 2024 May 31;20(5):e1012169. doi: 10.1371/journal.pcbi.1012169. eCollection 2024 May.
8
Estimation of horizontal running power using foot-worn inertial measurement units.使用足部穿戴式惯性测量单元估算水平跑步功率。
Front Bioeng Biotechnol. 2023 Jun 22;11:1167816. doi: 10.3389/fbioe.2023.1167816. eCollection 2023.

本文引用的文献

6
People choose to run at their optimal speed.人们选择以他们的最佳速度奔跑。
Am J Phys Anthropol. 2017 May;163(1):85-93. doi: 10.1002/ajpa.23187. Epub 2017 Feb 14.
7
Gait biomechanics in the era of data science.数据科学时代的步态生物力学。
J Biomech. 2016 Dec 8;49(16):3759-3761. doi: 10.1016/j.jbiomech.2016.10.033. Epub 2016 Oct 27.
9
Humans Can Continuously Optimize Energetic Cost during Walking.人类在行走过程中可以不断优化能量消耗。
Curr Biol. 2015 Sep 21;25(18):2452-6. doi: 10.1016/j.cub.2015.08.016. Epub 2015 Sep 10.
10
BMI, a performance parameter for speed improvement.BMI,用于提高速度的性能参数。
PLoS One. 2014 Feb 25;9(2):e90183. doi: 10.1371/journal.pone.0090183. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验