文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

分析来自可穿戴设备和智能手机应用程序的大规模健康数据的最佳实践。

Best practices for analyzing large-scale health data from wearables and smartphone apps.

作者信息

Hicks Jennifer L, Althoff Tim, Sosic Rok, Kuhar Peter, Bostjancic Bojan, King Abby C, Leskovec Jure, Delp Scott L

机构信息

1Department of Bioengineering, Stanford University, Stanford, CA USA.

2Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA USA.

出版信息

NPJ Digit Med. 2019 Jun 3;2:45. doi: 10.1038/s41746-019-0121-1. eCollection 2019.


DOI:10.1038/s41746-019-0121-1
PMID:31304391
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6550237/
Abstract

Smartphone apps and wearable devices for tracking physical activity and other health behaviors have become popular in recent years and provide a largely untapped source of data about health behaviors in the free-living environment. The data are large in scale, collected at low cost in the "wild", and often recorded in an automatic fashion, providing a powerful complement to traditional surveillance studies and controlled trials. These data are helping to reveal, for example, new insights about environmental and social influences on physical activity. The observational nature of the datasets and collection via commercial devices and apps pose challenges, however, including the potential for measurement, population, and/or selection bias, as well as missing data. In this article, we review insights gleaned from these datasets and propose best practices for addressing the limitations of large-scale data from apps and wearables. Our goal is to enable researchers to effectively harness the data from smartphone apps and wearable devices to better understand what drives physical activity and other health behaviors.

摘要

近年来,用于追踪身体活动及其他健康行为的智能手机应用程序和可穿戴设备已变得十分流行,它们提供了一个在自由生活环境中关于健康行为的、很大程度上未被开发的数据来源。这些数据规模庞大,在“自然状态”下以低成本收集,且常以自动方式记录,为传统监测研究和对照试验提供了有力补充。例如,这些数据正有助于揭示有关环境和社会对身体活动影响的新见解。然而,数据集的观察性质以及通过商业设备和应用程序进行收集带来了挑战,包括测量、人群和/或选择偏差的可能性,以及数据缺失问题。在本文中,我们回顾了从这些数据集中获得的见解,并提出解决来自应用程序和可穿戴设备的大规模数据局限性的最佳实践方法。我们的目标是使研究人员能够有效地利用来自智能手机应用程序和可穿戴设备的数据,以更好地理解驱动身体活动和其他健康行为的因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e90/6550237/172f4388f706/41746_2019_121_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e90/6550237/dad43eddfd27/41746_2019_121_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e90/6550237/f64bf5797318/41746_2019_121_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e90/6550237/030ad0ed9b3e/41746_2019_121_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e90/6550237/5aa1b2588ad3/41746_2019_121_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e90/6550237/670548bcdb18/41746_2019_121_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e90/6550237/58df45477be0/41746_2019_121_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e90/6550237/a9d0c5ec41bc/41746_2019_121_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e90/6550237/172f4388f706/41746_2019_121_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e90/6550237/dad43eddfd27/41746_2019_121_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e90/6550237/f64bf5797318/41746_2019_121_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e90/6550237/030ad0ed9b3e/41746_2019_121_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e90/6550237/5aa1b2588ad3/41746_2019_121_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e90/6550237/670548bcdb18/41746_2019_121_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e90/6550237/58df45477be0/41746_2019_121_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e90/6550237/a9d0c5ec41bc/41746_2019_121_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e90/6550237/172f4388f706/41746_2019_121_Fig8_HTML.jpg

相似文献

[1]
Best practices for analyzing large-scale health data from wearables and smartphone apps.

NPJ Digit Med. 2019-6-3

[2]
Commonly available activity tracker apps and wearables as a mental health outcome indicator: A prospective observational cohort study among young adults with psychological distress.

J Affect Disord. 2018-4-22

[3]
An Assessment of Physical Activity Data Collected via a Smartphone App and a Smart Band in Breast Cancer Survivors: Observational Study.

J Med Internet Res. 2019-9-6

[4]
Big data vs accurate data in health research: Large-scale physical activity monitoring, smartphones, wearable devices and risk of unconscious bias.

Med Hypotheses. 2018-7-17

[5]
A Scientific Overview of Smartphone Applications and Electronic Devices for Weight Management in Adults.

J Pers Med. 2019-6-7

[6]
The need for culturally-tailored smartphone applications for weight control.

J Ga Public Health Assoc. 2016

[7]
A Study to Determine the Most Popular Lifestyle Smartphone Applications and Willingness of the Public to Share Their Personal Data for Health Research.

Telemed J E Health. 2016-8

[8]
Apps and wearables in the monitoring of mental health disorders.

Br J Hosp Med (Lond). 2018-12-2

[9]
Smartphone apps to improve fitness and increase physical activity among young people: protocol of the Apps for IMproving FITness (AIMFIT) randomized controlled trial.

BMC Public Health. 2015-7-11

[10]
Use of Health Apps and Wearable Devices: Survey Among Italian Associations for Patient Advocacy.

JMIR Mhealth Uhealth. 2019-1-15

引用本文的文献

[1]
Countrywide natural experiment links built environment to physical activity.

Nature. 2025-8-13

[2]
Consumer Wearable Usage to Collect Health Data Among Adults Living in Germany: Nationwide Observational Survey Study.

JMIR Mhealth Uhealth. 2025-6-11

[3]
A Co-Segmentation Algorithm to Predict Emotional Stress From Passively Sensed mHealth Data.

Stat Med. 2025-5

[4]
Investigating the Magnitude and Persistence of COVID-19-Related Impacts on Affect and GPS-Derived Daily Mobility Patterns in Adolescence and Emerging Adulthood: Insights From a Smartphone-Based Intensive Longitudinal Study of Colorado-Based Youths From June 2016 to April 2022.

J Med Internet Res. 2025-3-17

[5]
Refining Established Practices for Research Question Definition to Foster Interdisciplinary Research Skills in a Digital Age: Consensus Study With Nominal Group Technique.

JMIR Med Educ. 2025-1-23

[6]
Participant Contributions to Person-Generated Health Data Research Using Mobile Devices: Scoping Review.

J Med Internet Res. 2025-1-20

[7]
2SpamH: A Two-Stage Pre-Processing Algorithm for Passively Sensed mHealth Data.

Sensors (Basel). 2024-10-31

[8]
Smartphone Screen Time Characteristics in People With Suicidal Thoughts: Retrospective Observational Data Analysis Study.

JMIR Mhealth Uhealth. 2024-10-11

[9]
The Value of Smartwatches in the Health Care Sector for Monitoring, Nudging, and Predicting: Viewpoint on 25 Years of Research.

J Med Internet Res. 2024-10-25

[10]
Challenges and Alternatives to Evaluation Methods and Regulation Approaches for Medical Apps as Mobile Medical Devices: International and Multidisciplinary Focus Group Discussion.

J Med Internet Res. 2024-9-30

本文引用的文献

[1]
Enhancing safe routes to school programs through community-engaged citizen science: two pilot investigations in lower density areas of Santa Clara County, California, USA.

BMC Public Health. 2019-3-1

[2]
Maximizing the promise of citizen science to advance health and prevent disease.

Prev Med. 2019-2

[3]
I'll Be Back: On the Multiple Lives of Users of a Mobile Activity Tracking Application.

Proc Int World Wide Web Conf. 2018-4

[4]
Modeling Interdependent and Periodic Real-World Action Sequences.

Proc Int World Wide Web Conf. 2018-4

[5]
Current State of Commercial Wearable Technology in Physical Activity Monitoring 2015-2017.

Int J Exerc Sci. 2018-1-2

[6]
Real World Home Blood Pressure Variability in Over 56,000 Individuals With Nearly 17 Million Measurements.

Am J Hypertens. 2018-4-13

[7]
How Gamification Affects Physical Activity: Large-scale Analysis of Walking Challenges in a Mobile Application.

Proc Int World Wide Web Conf. 2017-4

[8]
Large-scale physical activity data reveal worldwide activity inequality.

Nature. 2017-7-20

[9]
Characterizing user engagement with health app data: a data mining approach.

Transl Behav Med. 2017-6

[10]
Accuracy in Wrist-Worn, Sensor-Based Measurements of Heart Rate and Energy Expenditure in a Diverse Cohort.

J Pers Med. 2017-5-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索