Jena Jagannath, Göbel Börge, Hirosawa Tomoki, Díaz Sebastián A, Wolf Daniel, Hinokihara Taichi, Kumar Vivek, Mertig Ingrid, Felser Claudia, Lubk Axel, Loss Daniel, Parkin Stuart S P
Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany.
Institute of Physics, Martin Luther University Halle-Wittenberg, 06120, Halle, Germany.
Nat Commun. 2022 Apr 29;13(1):2348. doi: 10.1038/s41467-022-29991-1.
Recently a zoology of non-collinear chiral spin textures has been discovered, most of which, such as skyrmions and antiskyrmions, have integer topological charges. Here we report the experimental real-space observation of the formation and stability of fractional antiskyrmions and fractional elliptical skyrmions in a Heusler material. These fractional objects appear, over a wide range of temperature and magnetic field, at the edges of a sample, whose interior is occupied by an array of nano-objects with integer topological charges, in agreement with our simulations. We explore the evolution of these objects in the presence of magnetic fields and show their interconversion to objects with integer topological charges. This means the topological charge can be varied continuously. These fractional spin textures are not just another type of skyrmion, but are essentially a new state of matter that emerges and lives only at the boundary of a magnetic system. The coexistence of both integer and fractionally charged spin textures in the same material makes the Heusler family of compounds unique for the manipulation of the real-space topology of spin textures and thus an exciting platform for spintronic and magnonic applications.
最近,人们发现了一种非共线手性自旋纹理的动物学现象,其中大多数,如斯格明子和反斯格明子,具有整数拓扑电荷。在此,我们报告了在一种赫斯勒材料中对分数反斯格明子和分数椭圆斯格明子的形成与稳定性进行的实验实空间观测。在很宽的温度和磁场范围内,这些分数对象出现在样品的边缘,样品内部被具有整数拓扑电荷的纳米对象阵列占据,这与我们的模拟结果一致。我们研究了这些对象在磁场存在下的演化,并展示了它们向具有整数拓扑电荷的对象的相互转换。这意味着拓扑电荷可以连续变化。这些分数自旋纹理不仅仅是另一种类型的斯格明子,而是本质上一种仅出现在磁系统边界并存在于此的新物质状态。同一材料中整数和分数电荷自旋纹理的共存使得赫斯勒化合物家族在操纵自旋纹理的实空间拓扑方面具有独特性,因此是自旋电子学和磁子学应用的一个令人兴奋的平台。