Sivakumar Pranava K, Göbel Börge, Lesne Edouard, Markou Anastasios, Gidugu Jyotsna, Taylor James M, Deniz Hakan, Jena Jagannath, Felser Claudia, Mertig Ingrid, Parkin Stuart S P
Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany.
Institute of Physics, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany.
ACS Nano. 2020 Oct 27;14(10):13463-13469. doi: 10.1021/acsnano.0c05413. Epub 2020 Oct 6.
Magnetic skyrmions and antiskyrmions are observed in material classes with different crystal symmetries, where the Dzyaloshinskii-Moriya interaction stabilizes either skyrmions or antiskyrmions. Here, we report the observation of two distinct peaks in the topological Hall effect in a thin film of MnRhSn. Utilizing a phenomenological approach and electronic transport simulations, these topological Hall effect features are attributed to be direct signatures of two topologically distinct chiral spin objects, namely, skyrmions and antiskyrmions. Topological Hall effect studies allow us to determine the existence of these two topological objects over a wide range of temperature and magnetic fields. In particular, we find skyrmions to be stable at low temperatures, suggesting the increased importance of dipolar interactions.
在具有不同晶体对称性的材料类别中观察到了磁性斯格明子和反斯格明子,其中,Dzyaloshinskii-Moriya相互作用使斯格明子或反斯格明子稳定存在。在此,我们报告在MnRhSn薄膜的拓扑霍尔效应中观察到两个不同的峰值。利用唯象方法和电子输运模拟,这些拓扑霍尔效应特征被认为是两种拓扑不同的手性自旋物体,即斯格明子和反斯格明子的直接特征。拓扑霍尔效应研究使我们能够在很宽的温度和磁场范围内确定这两种拓扑物体的存在。特别是,我们发现斯格明子在低温下是稳定的,这表明偶极相互作用的重要性增加。