Suppr超能文献

基于双向长短期记忆网络优化的改进麻雀搜索算法的碳价预测新型混合学习范式及特征提取

A novel hybrid learning paradigm with feature extraction for carbon price prediction based on Bi-directional long short-term memory network optimized by an improved sparrow search algorithm.

机构信息

Department of Economics and Management, North China Electric Power University, Baoding, Hebei, 071000, China.

出版信息

Environ Sci Pollut Res Int. 2022 Sep;29(43):65585-65598. doi: 10.1007/s11356-022-20450-4. Epub 2022 Apr 30.

Abstract

An efficient carbon trading market can effectively curb excessive carbon emissions and thus slow down the pace of global warming, which heightens the necessity of improving the accuracy of carbon price forecasting. In order to overcome the weakness of previous prediction model that always trained data in one-way neural networks and propagated the data sequentially, this paper proposes a novel hybrid learning paradigm WPD-ISSA-BiLSTM combining wavelet packet decomposition (WPD), improved sparrow search algorithm (ISSA), and Bi-directional long short-term memory network for deep feature exploration of carbon prices. Firstly, WPD decomposes and reconstructs the original carbon price series into several independent subseries. Then, the input features of the all subseries are filtered with random forest to select the best input features for the prediction model. Finally, a Bi-directional long short-term memory network optimized by the ISSA is employed to deeply delineate the intrinsic evolutionary trends of carbon prices, and the prediction results of all subseries are superimposed on each other to obtain the final carbon price prediction results. The actual carbon emission trading prices are collected as input to the model, and the experimental results show that the RMSE values of the proposed model are 0.2516 and 0.2962 under the mild and severe volatility scenarios, respectively. The proposed model has superiority and robustness compared to the comparison model and several existing models and better understands the intrinsic correlation between historical carbon price data. The results of this study can provide meaningful references for the carbon market development and emission reduction pathways.

摘要

一个有效的碳交易市场可以有效地遏制过度碳排放,从而减缓全球变暖的步伐,这就提高了提高碳价格预测准确性的必要性。为了克服之前预测模型的弱点,这些模型总是在单向神经网络中训练数据并顺序传播数据,本文提出了一种新的混合学习范例 WPD-ISSA-BiLSTM,该范例结合了小波包分解(WPD)、改进的麻雀搜索算法(ISSA)和双向长短期记忆网络,用于深入挖掘碳价格的深度特征。首先,WPD 将原始碳价格序列分解并重构为几个独立的子序列。然后,使用随机森林对所有子序列的输入特征进行过滤,以选择最适合预测模型的输入特征。最后,使用 ISSA 优化的双向长短期记忆网络深入描绘碳价格的内在演化趋势,并将所有子序列的预测结果相互叠加,以获得最终的碳价格预测结果。实际的碳排放交易价格被收集作为模型的输入,实验结果表明,在温和和剧烈波动的情况下,所提出的模型的 RMSE 值分别为 0.2516 和 0.2962。与比较模型和几个现有模型相比,所提出的模型具有优越性和鲁棒性,并且更好地理解了历史碳价格数据之间的内在相关性。本研究的结果可为碳市场发展和减排途径提供有意义的参考。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验