Suppr超能文献

新型 PIRADS 模型和外周带前列腺特异性抗原密度校正可提高初始前列腺活检的检出率:一项诊断研究。

New model of PIRADS and adjusted prostatespecific antigen density of peripheral zone improves the detection rate of initial prostate biopsy: a diagnostic study.

机构信息

Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.

Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.

出版信息

Asian J Androl. 2023 Jan-Feb;25(1):126-131. doi: 10.4103/aja202218.

Abstract

This study explored a new model of Prostate Imaging Reporting and Data System (PIRADS) and adjusted prostate-specific antigen density of peripheral zone (aPSADPZ) for predicting the occurrence of prostate cancer (PCa) and clinically significant prostate cancer (csPCa). The demographic and clinical characteristics of 853 patients were recorded. Prostate-specific antigen (PSA), PSA density (PSAD), PSAD of peripheral zone (PSADPZ), aPSADPZ, and peripheral zone volume ratio (PZ-ratio) were calculated and subjected to receiver operating characteristic (ROC) curve analysis. The calibration and discrimination abilities of new nomograms were verified with the calibration curve and area under the ROC curve (AUC). The clinical benefits of these models were evaluated by decision curve analysis and clinical impact curves. The AUCs of PSA, PSAD, PSADPZ, aPSADPZ, and PZ-ratio were 0.669, 0.762, 0.659, 0.812, and 0.748 for PCa diagnosis, while 0.713, 0.788, 0.694, 0.828, and 0.735 for csPCa diagnosis, respectively. All nomograms displayed higher net benefit and better overall calibration than the scenarios for predicting the occurrence of PCa or csPCa. The new model significantly improved the diagnostic accuracy of PCa (0.945 vs 0.830, P < 0.01) and csPCa (0.937 vs 0.845, P < 0.01) compared with the base model. In addition, the number of patients with PCa and csPCa predicted by the new model was in good agreement with the actual number of patients with PCa and csPCa in high-risk threshold. This study demonstrates that aPSADPZ has a higher predictive accuracy for PCa diagnosis than the conventional indicators. Combining aPSADPZ with PIRADS can improve PCa diagnosis and avoid unnecessary biopsies.

摘要

本研究探索了一种新的前列腺影像报告和数据系统(PIRADS)模型,并调整了外周带前列腺特异性抗原密度(aPSADPZ),以预测前列腺癌(PCa)和临床显著前列腺癌(csPCa)的发生。记录了 853 例患者的人口统计学和临床特征。计算了前列腺特异性抗原(PSA)、PSA 密度(PSAD)、外周带 PSA 密度(PSADPZ)、aPSADPZ 和外周带容积比(PZ-ratio),并进行了受试者工作特征(ROC)曲线分析。通过校准曲线和 ROC 曲线下面积(AUC)验证了新列线图的校准和区分能力。通过决策曲线分析和临床影响曲线评估了这些模型的临床获益。PSA、PSAD、PSADPZ、aPSADPZ 和 PZ-ratio 对 PCa 诊断的 AUC 分别为 0.669、0.762、0.659、0.812 和 0.748,对 csPCa 诊断的 AUC 分别为 0.713、0.788、0.694、0.828 和 0.735。所有列线图在预测 PCa 或 csPCa 发生的情况下,均显示出更高的净收益和更好的整体校准。与基础模型相比,新模型显著提高了 PCa(0.945 与 0.830,P<0.01)和 csPCa(0.937 与 0.845,P<0.01)的诊断准确性。此外,新模型预测的 PCa 和 csPCa 患者数量与高危阈值内的实际 PCa 和 csPCa 患者数量吻合较好。本研究表明,与传统指标相比,aPSADPZ 对 PCa 诊断具有更高的预测准确性。结合 aPSADPZ 和 PIRADS 可以提高 PCa 的诊断准确率,避免不必要的活检。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/158f/9933967/33936fae1769/AJA-25-126-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验