Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
Institute of Respiratory Diseases, Department of Respiratory, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China.
J Control Release. 2022 Jul;347:55-67. doi: 10.1016/j.jconrel.2022.04.033. Epub 2022 May 5.
Though amounts of attempts about nanomedicine for chemo-radiotherapy have been made, more efficient strategies for chemo-radio therapy enhancement still need to be studied and perfected. Herein, a 'yolk-shell'-like nanostructure (BiS@mBiMnO nanosystem) was facilely constructed by directly using radiosensitizer BiS nanorods (NRs) as a partial sacrificial template. Then, the chemotherapeutic drug doxorubicin (DOX) loaded PEGylated BiS@mBiMnO nanosystem (PBmB-DOX) was constructed, which could realize tumor microenvironment (TME)-responsive drug release for chemotherapy sensitivity enhancement. And the BiS NRs core could deposit more radiant energy to improve the radiotherapy sensitivity. Meanwhile, the compounds shell could catalyze HO to generate O, so as to alleviate tumor hypoxia for further chemo-radio therapy sensitization enhancement. More importantly, ferroptosis was participated in the process of PBmB-induced therapy via glutathione (GSH)-depletion mediated GPX4 inactivation, together with Mn ions induced chemodynamic therapy (Fenton-like reaction), which made additional contributions to increase the therapeutic efficacy. Last but not least, the GSH-stimulated degradation of compounds shell could contribute to self-enhanced T-MR imaging activation, which allowed on-demand tumor diagnosis. In this work, the synthetic strategy that directly using BiS NRs as a partial sacrificial template to rapidly synthesize the 'yolk-shell'-like nanostructure for nanomedical application has rarely been reported before. And the in vitro and in vivo results suggest that our 'yolk-shell'-like PBmB-DOX nanosystem holds great promise to regulate TME for tumor-specific diagnosis and synergistic therapy.
尽管已经有许多关于纳米医学化疗放疗的尝试,但仍需要研究和完善更有效的化疗放疗增强策略。在此,通过直接使用放射增敏剂 BiS 纳米棒(NRs)作为部分牺牲模板,简便地构建了一种“蛋黄壳”状纳米结构(BiS@mBiMnO 纳米系统)。然后,负载阿霉素(DOX)的化疗药物载 PBmB-DOX 纳米系统(PBmB-DOX)被构建,它可以实现肿瘤微环境(TME)响应性药物释放,从而提高化疗敏感性。而且,BiS NRs 核可以沉积更多的辐射能来提高放疗敏感性。同时,化合物壳可以催化 HO 生成 O,从而缓解肿瘤缺氧,进一步增强化疗放疗敏感性。更重要的是,通过谷胱甘肽(GSH)耗竭介导的 GPX4 失活,参与 PBmB 诱导治疗的铁死亡过程,以及 Mn 离子诱导的化学动力学治疗(类 Fenton 反应),为提高治疗效果做出了额外贡献。最后但同样重要的是,化合物壳的 GSH 刺激降解有助于自我增强 T-MR 成像激活,从而按需进行肿瘤诊断。在这项工作中,直接使用 BiS NRs 作为部分牺牲模板来快速合成用于纳米医学应用的“蛋黄壳”状纳米结构的合成策略以前很少有报道。体外和体内结果表明,我们的“蛋黄壳”状 PBmB-DOX 纳米系统有望调节 TME,用于肿瘤特异性诊断和协同治疗。