Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, P.R. China.
Department of Neurosurgery, Second Affiliated Hospital, School of Medicine and MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China.
ACS Nano. 2022 Nov 22;16(11):19038-19052. doi: 10.1021/acsnano.2c08077. Epub 2022 Oct 31.
Fenton reaction-based chemodynamic therapy (CDT), which applies metal ions to convert less active hydrogen peroxide (HO) into more harmful hydroxyl peroxide (·OH) for tumor treatment, has attracted increasing interest recently. However, the CDT is substantially hindered by glutathione (GSH) scavenging effect on ·OH, low intracellular HO level, and low reaction rate, resulting in unsatisfactory efficacy. Here, a cancer cell membrane (CM)-camouflaged Au nanorod core/mesoporous MnO shell yolk-shell nanocatalyst embedded with glucose oxidase (GOD) and Dox (denoted as AMGDC) is constructed for synergistic triple-augmented CDT and chemotherapy of tumor under MRI/PAI guidance. Benefiting from the homologous adhesion and immune escaping property of the cancer CM, the nanocatalysts can target tumor and gradually accumulate in tumor site. For triple-augmented CDT, first, the MnO shell reacts with intratumoral GSH to generate Mn and glutathione disulfide, which achieves Fenton-like ion delivery and weakening of GSH-mediated scavenging effect, leading to GSH depletion-enhanced CDT. Second, the intratumoral glucose can be oxidized to HO and gluconic acid by GOD, achieving supplementary HO-enhanced CDT. Next, the AuNRs absorbing in NIR-II elevate the local tumor temperature upon NIR-II laser irradiation, achieving photothermal-enhanced CDT. Dox is rapidly released for adjuvant chemotherapy due to responsive degradation of MnO shell. Moreover, GSH-activated PAI/MRI can be used to monitor CDT process. This study provides a great paradigm for enhancing CDT-mediated antitumor efficacy.
基于芬顿反应的化学动力学治疗(CDT)利用金属离子将活性较低的过氧化氢(HO)转化为更具危害性的羟自由基(·OH),从而应用于肿瘤治疗,最近引起了越来越多的关注。然而,CDT 受到谷胱甘肽(GSH)对·OH 的清除作用、细胞内低 HO 水平和低反应速率的显著限制,导致疗效不佳。在这里,构建了一种癌细胞膜(CM)伪装的 Au 纳米棒核/介孔 MnO 壳蛋黄壳纳米催化剂,其中嵌入了葡萄糖氧化酶(GOD)和阿霉素(DOX)(记为 AMGDC),用于在 MRI/PAI 引导下协同增强三重 CDT 和肿瘤化疗。受益于癌细胞 CM 的同源粘附和免疫逃逸特性,纳米催化剂可以靶向肿瘤并逐渐在肿瘤部位积累。对于三重增强的 CDT,首先,MnO 壳与肿瘤内的 GSH 反应生成 Mn 和谷胱甘肽二硫化物,实现类芬顿离子传递并削弱 GSH 介导的清除作用,导致 GSH 耗竭增强 CDT。其次,肿瘤内的葡萄糖可以被 GOD 氧化为 HO 和葡萄糖酸,实现补充 HO 增强的 CDT。接下来,吸收近红外二区(NIR-II)的 AuNRs 在 NIR-II 激光照射下提高局部肿瘤温度,实现光热增强的 CDT。由于 MnO 壳的响应性降解,DOX 迅速释放用于辅助化疗。此外,可通过 GSH 激活的 PAI/MRI 来监测 CDT 过程。这项研究为增强 CDT 介导的抗肿瘤疗效提供了一个范例。
Angew Chem Int Ed Engl. 2018-3-23
Acta Biomater. 2022-7-15
Int J Nanomedicine. 2025-8-29
Biochem Biophys Rep. 2025-3-7
Front Oncol. 2024-10-29