Suppr超能文献

听觉信息的神经元编码中的耳蜗处理特征。

Signatures of cochlear processing in neuronal coding of auditory information.

机构信息

Institut de l'Audition, Institut Pasteur, INSERM, Paris, France.

Institut de l'Audition, Institut Pasteur, INSERM, Paris, France; CNRS, France.

出版信息

Mol Cell Neurosci. 2022 May;120:103732. doi: 10.1016/j.mcn.2022.103732. Epub 2022 Apr 27.

Abstract

The vertebrate ear is endowed with remarkable perceptual capabilities. The faintest sounds produce vibrations of magnitudes comparable to those generated by thermal noise and can nonetheless be detected through efficient amplification of small acoustic stimuli. Two mechanisms have been proposed to underlie such sound amplification in the mammalian cochlea: somatic electromotility and active hair-bundle motility. These biomechanical mechanisms may work in concert to tune auditory sensitivity. In addition to amplitude sensitivity, the hearing system shows exceptional frequency discrimination allowing mammals to distinguish complex sounds with great accuracy. For instance, although the wide hearing range of humans encompasses frequencies from 20 Hz to 20 kHz, our frequency resolution extends to one-thirtieth of the interval between successive keys on a piano. In this article, we review the different cochlear mechanisms underlying sound encoding in the auditory system, with a particular focus on the frequency decomposition of sounds. The relation between peak frequency of activation and location along the cochlea - known as tonotopy - arises from multiple gradients in biophysical properties of the sensory epithelium. Tonotopic mapping represents a major organizational principle both in the peripheral hearing system and in higher processing levels and permits the spectral decomposition of complex tones. The ribbon synapses connecting sensory hair cells to auditory afferents and the downstream spiral ganglion neurons are also tuned to process periodic stimuli according to their preferred frequency. Though sensory hair cells and neurons necessarily filter signals beyond a few kHz, many animals can hear well beyond this range. We finally describe how the cochlear structure shapes the neural code for further processing in order to send meaningful information to the brain. Both the phase-locked response of auditory nerve fibers and tonotopy are key to decode sound frequency information and place specific constraints on the downstream neuronal network.

摘要

脊椎动物的耳朵具有卓越的感知能力。最微弱的声音产生的振动幅度与热噪声产生的振动幅度相当,但仍可通过对小的声刺激进行有效的放大来检测到。有两种机制被提出来解释哺乳动物耳蜗中声音放大的原因:体动电和主动毛束运动。这些生物力学机制可能协同工作以调节听觉灵敏度。除了幅度灵敏度外,听觉系统还表现出非凡的频率辨别能力,使哺乳动物能够非常准确地分辨复杂的声音。例如,尽管人类的听觉范围很广,涵盖了 20 Hz 到 20 kHz 的频率,但我们的频率分辨率可以扩展到钢琴上连续按键之间间隔的三十分之一。在本文中,我们回顾了听觉系统中声音编码的不同耳蜗机制,特别关注声音的频率分解。激活的峰值频率与耳蜗上的位置之间的关系 - 称为音调图 - 源于感觉上皮的多种生物物理特性梯度。音调图既是外周听觉系统的主要组织原则,也是高级处理水平的主要组织原则,它允许对复杂音调进行频谱分解。连接感觉毛细胞和听觉传入的带状突触以及下游的螺旋神经节神经元也根据其首选频率进行周期性刺激的处理。虽然感觉毛细胞和神经元必然会过滤掉超过几个 kHz 的信号,但许多动物可以听到远远超出这个范围的声音。我们最后描述了耳蜗结构如何塑造神经编码,以便将有意义的信息传递给大脑。听觉神经纤维的锁相响应和音调图都是解码声音频率信息的关键,并且对下游神经网络施加了特定的限制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验