Suppr超能文献

超优感知整合表明高频处音高存在基于位置的表征。

Superoptimal Perceptual Integration Suggests a Place-Based Representation of Pitch at High Frequencies.

作者信息

Lau Bonnie K, Mehta Anahita H, Oxenham Andrew J

机构信息

Department of Psychology, University of Minnesota, Minneapolis, Minnesota 55455

Department of Psychology, University of Minnesota, Minneapolis, Minnesota 55455.

出版信息

J Neurosci. 2017 Sep 13;37(37):9013-9021. doi: 10.1523/JNEUROSCI.1507-17.2017. Epub 2017 Aug 17.

Abstract

Pitch, the perceptual correlate of sound repetition rate or frequency, plays an important role in speech perception, music perception, and listening in complex acoustic environments. Despite the perceptual importance of pitch, the neural mechanisms that underlie it remain poorly understood. Although cortical regions responsive to pitch have been identified, little is known about how pitch information is extracted from the inner ear itself. The two primary theories of peripheral pitch coding involve stimulus-driven spike timing, or phase locking, in the auditory nerve (time code), and the spatial distribution of responses along the length of the cochlear partition (place code). To rule out the use of timing information, we tested pitch discrimination of very high-frequency tones (>8 kHz), well beyond the putative limit of phase locking. We found that high-frequency pure-tone discrimination was poor, but when the tones were combined into a harmonic complex, a dramatic improvement in discrimination ability was observed that exceeded performance predicted by the optimal integration of peripheral information from each of the component frequencies. The results are consistent with the existence of pitch-sensitive neurons that rely only on place-based information from multiple harmonically related components. The results also provide evidence against the common assumption that poor high-frequency pure-tone pitch perception is the result of peripheral neural-coding constraints. The finding that place-based spectral coding is sufficient to elicit complex pitch at high frequencies has important implications for the design of future neural prostheses to restore hearing to deaf individuals. The question of how pitch is represented in the ear has been debated for over a century. Two competing theories involve timing information from neural spikes in the auditory nerve (time code) and the spatial distribution of neural activity along the length of the cochlear partition (place code). By using very high-frequency tones unlikely to be coded via time information, we discovered that information from the individual harmonics is combined so efficiently that performance exceeds theoretical predictions based on the optimal integration of information from each harmonic. The findings have important implications for the design of auditory prostheses because they suggest that enhanced spatial resolution alone may be sufficient to restore pitch via such implants.

摘要

音高作为声音重复率或频率的感知对应物,在言语感知、音乐感知以及复杂声学环境中的聆听方面发挥着重要作用。尽管音高在感知方面具有重要性,但其背后的神经机制仍知之甚少。虽然已经确定了对音高有反应的皮层区域,但对于如何从内耳本身提取音高信息却了解甚少。外周音高编码的两种主要理论涉及听觉神经中的刺激驱动尖峰时间,即相位锁定(时间编码),以及沿着耳蜗隔板长度的反应空间分布(位置编码)。为了排除时间信息的使用,我们测试了频率非常高(>8 kHz)的音调的音高辨别能力,该频率远超相位锁定的假定极限。我们发现高频纯音辨别能力较差,但当这些音调组合成一个谐波复合体时,观察到辨别能力有显著提高,超过了根据每个成分频率的外周信息最佳整合所预测的表现。这些结果与仅依赖来自多个谐波相关成分的基于位置信息的音高敏感神经元的存在相一致。这些结果也为反对普遍假设提供了证据,即高频纯音音高感知不佳是外周神经编码限制的结果。基于位置的频谱编码足以在高频引发复杂音高这一发现,对于未来为失聪个体恢复听力的神经假体设计具有重要意义。关于音高如何在耳朵中表征的问题已经争论了一个多世纪。两种相互竞争的理论涉及来自听觉神经中神经尖峰的时间信息(时间编码)以及沿着耳蜗隔板长度的神经活动空间分布(位置编码)。通过使用不太可能通过时间信息编码的非常高频的音调,我们发现来自各个谐波的信息如此高效地组合在一起,以至于表现超过了基于每个谐波信息最佳整合的理论预测。这些发现对听觉假体设计具有重要意义,因为它们表明仅增强空间分辨率可能就足以通过此类植入物恢复音高。

相似文献

1
Superoptimal Perceptual Integration Suggests a Place-Based Representation of Pitch at High Frequencies.
J Neurosci. 2017 Sep 13;37(37):9013-9021. doi: 10.1523/JNEUROSCI.1507-17.2017. Epub 2017 Aug 17.
2
Robust Rate-Place Coding of Resolved Components in Harmonic and Inharmonic Complex Tones in Auditory Midbrain.
J Neurosci. 2020 Mar 4;40(10):2080-2093. doi: 10.1523/JNEUROSCI.2337-19.2020. Epub 2020 Jan 29.
4
Subcortical neural synchrony and absolute thresholds predict frequency discrimination independently.
J Assoc Res Otolaryngol. 2013 Oct;14(5):757-66. doi: 10.1007/s10162-013-0402-3. Epub 2013 Jun 13.
5
Correct tonotopic representation is necessary for complex pitch perception.
Proc Natl Acad Sci U S A. 2004 Feb 3;101(5):1421-5. doi: 10.1073/pnas.0306958101. Epub 2004 Jan 12.
6
Neural representation of harmonic complex tones in primary auditory cortex of the awake monkey.
J Neurosci. 2013 Jun 19;33(25):10312-23. doi: 10.1523/JNEUROSCI.0020-13.2013.
8
Pitch of harmonic complex tones: rate and temporal coding of envelope repetition rate in inferior colliculus of unanesthetized rabbits.
J Neurophysiol. 2019 Dec 1;122(6):2468-2485. doi: 10.1152/jn.00512.2019. Epub 2019 Oct 30.
9
Sensitivity to Frequency Modulation is Limited Centrally.
J Neurosci. 2023 May 17;43(20):3687-3695. doi: 10.1523/JNEUROSCI.0995-22.2023. Epub 2023 Apr 7.
10
Dead regions and pitch perception.
J Acoust Soc Am. 2005 Jun;117(6):3841-52. doi: 10.1121/1.1920167.

引用本文的文献

1
Temporal Pitch Perception of Multi-Channel Stimuli by Cochlear-Implant Users.
J Assoc Res Otolaryngol. 2025 Jun;26(3):301-315. doi: 10.1007/s10162-025-00983-4. Epub 2025 Mar 28.
4
Role of perceptual integration in pitch discrimination at high frequenciesa).
JASA Express Lett. 2022 Aug 1;2(8). doi: 10.1121/10.0013429.
5
Sensitivity to Frequency Modulation is Limited Centrally.
J Neurosci. 2023 May 17;43(20):3687-3695. doi: 10.1523/JNEUROSCI.0995-22.2023. Epub 2023 Apr 7.
6
Questions and controversies surrounding the perception and neural coding of pitch.
Front Neurosci. 2023 Jan 9;16:1074752. doi: 10.3389/fnins.2022.1074752. eCollection 2022.
8
Human discrimination and modeling of high-frequency complex tones shed light on the neural codes for pitch.
PLoS Comput Biol. 2022 Mar 3;18(3):e1009889. doi: 10.1371/journal.pcbi.1009889. eCollection 2022 Mar.
9
On musical interval perception for complex tones at very high frequencies.
J Acoust Soc Am. 2021 Apr;149(4):2644. doi: 10.1121/10.0004222.

本文引用的文献

1
Harmonic template neurons in primate auditory cortex underlying complex sound processing.
Proc Natl Acad Sci U S A. 2017 Jan 31;114(5):E840-E848. doi: 10.1073/pnas.1607519114. Epub 2017 Jan 17.
2
Predicting the Perceptual Consequences of Hidden Hearing Loss.
Trends Hear. 2016 Jan-Dec;20:2331216516686768. doi: 10.1177/2331216516686768.
3
Superior temporal resolution of Chronos versus channelrhodopsin-2 in an optogenetic model of the auditory brainstem implant.
Hear Res. 2015 Apr;322:235-41. doi: 10.1016/j.heares.2015.01.004. Epub 2015 Jan 15.
4
Re-examining the upper limit of temporal pitch.
J Acoust Soc Am. 2014 Dec;136(6):3186. doi: 10.1121/1.4900917.
5
Close-field electroporation gene delivery using the cochlear implant electrode array enhances the bionic ear.
Sci Transl Med. 2014 Apr 23;6(233):233ra54. doi: 10.1126/scitranslmed.3008177.
6
Anatomical limits on interaural time differences: an ecological perspective.
Front Neurosci. 2014 Feb 28;8:34. doi: 10.3389/fnins.2014.00034. eCollection 2014.
8
Auditory frequency and intensity discrimination explained using a cortical population rate code.
PLoS Comput Biol. 2013;9(11):e1003336. doi: 10.1371/journal.pcbi.1003336. Epub 2013 Nov 14.
9
Pitch perception: dissociating frequency from fundamental-frequency discrimination.
Adv Exp Med Biol. 2013;787:137-45. doi: 10.1007/978-1-4614-1590-9_16.
10
Pitch perception.
J Neurosci. 2012 Sep 26;32(39):13335-8. doi: 10.1523/JNEUROSCI.3815-12.2012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验