GOTHAM Lab, Institute for Biocomputation and Physics of Complex Systems (BIFI) and Departamento de Física de la Materia Condensada, University of Zaragoza, 50018 Zaragoza, Spain.
Department of Mathematics, Universidad del Valle, 760032 Santiago de Cali, Colombia.
Chaos. 2022 Apr;32(4):041105. doi: 10.1063/5.0087435.
Over the last decade, the release of Wolbachia-infected Aedes aegypti into the natural habitat of this mosquito species has become the most sustainable and long-lasting technique to prevent and control vector-borne diseases, such as dengue, zika, or chikungunya. However, the limited resources to generate such mosquitoes and their effective distribution in large areas dominated by the Aedes aegypti vector represent a challenge for policymakers. Here, we introduce a mathematical framework for the spread of dengue in which competition between wild and Wolbachia-infected mosquitoes, the cross-contagion patterns between humans and vectors, the heterogeneous distribution of the human population in different areas, and the mobility flows between them are combined. Our framework allows us to identify the most effective areas for the release of Wolbachia-infected mosquitoes to achieve a large decrease in the global dengue prevalence.
在过去的十年中,将感染沃尔巴克氏体的埃及伊蚊释放到这种蚊子的自然栖息地已成为预防和控制登革热、寨卡病毒或基孔肯雅热等蚊媒传染病最可持续和持久的技术。然而,生成此类蚊子的有限资源及其在以埃及伊蚊为媒介的大面积地区的有效分布,对政策制定者构成了挑战。在这里,我们引入了一个登革热传播的数学框架,该框架将野生和感染沃尔巴克氏体的蚊子之间的竞争、人类和媒介之间的交叉传染模式、不同地区人类人口的异质分布以及它们之间的流动流量结合在一起。我们的框架使我们能够确定释放感染沃尔巴克氏体的蚊子的最有效区域,以实现全球登革热发病率的大幅下降。