Suppr超能文献

基于深度置信网络和随机森林的下肢连续运动估计。

Continuous motion estimation of lower limbs based on deep belief networks and random forest.

机构信息

Faculty of Robot Science and Engineering, Northeastern University, No. 195, Innovation Road, Hunnan District, Shenyang 110819, China.

College of Information Science and Engineering, Northeastern University, No. 3-11, Wenhua Road, Heping District, Shenyang 110169, China.

出版信息

Rev Sci Instrum. 2022 Apr 1;93(4):044106. doi: 10.1063/5.0057478.

Abstract

Due to the lag problem of traditional sensor acquisition data, the following movement of exoskeleton robots can affect the comfort of the wearer and even the normal movement pattern of the wearer. In order to solve the problem of lag in exoskeleton motion control, this paper designs a continuous motion estimation method for lower limbs based on the human surface electromyographic (sEMG) signal and achieves the recognition of the motion intention of the wearer through a combination of the deep belief network (DBN) and random forest (RF) algorithm. First, the motion characteristics of human lower limbs are analyzed, and the hip-knee angle and sEMG signal related to lower limb motion are collected and extracted; then, the DBN is used in the dimensionality reduction of the sEMG signal feature values; finally, the motion intention of the wearer is predicted using the RF model optimized by the genetic algorithm. The experimental results show that the root mean square error of knee and hip prediction results of the combined algorithm proposed in this article improved by 0.2573° and 0.3375°, respectively, compared to the algorithm with dimensionality reduction by principal component analysis, and the single prediction time is 0.28 ms less than that before dimensionality reduction, provided that other conditions are exactly the same.

摘要

由于传统传感器采集数据的滞后问题,外骨骼机器人的以下运动可能会影响佩戴者的舒适度,甚至影响佩戴者的正常运动模式。为了解决外骨骼运动控制中的滞后问题,本文设计了一种基于人体表面肌电(sEMG)信号的下肢连续运动估计方法,并通过深度置信网络(DBN)和随机森林(RF)算法的结合实现了佩戴者运动意图的识别。首先,分析了人体下肢的运动特征,采集并提取了与下肢运动相关的髋关节-膝关节角度和 sEMG 信号;然后,使用 DBN 对 sEMG 信号特征值进行降维;最后,使用遗传算法优化的 RF 模型预测佩戴者的运动意图。实验结果表明,与基于主成分分析降维的算法相比,本文提出的组合算法的膝关节和髋关节预测结果的均方根误差分别提高了 0.2573°和 0.3375°,并且在其他条件完全相同的情况下,单一预测时间比降维前减少了 0.28 毫秒。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验