Suppr超能文献

基于参数自更新机制模型的膝关节连续运动估计

Continuous Motion Estimation of Knee Joint Based on a Parameter Self-Updating Mechanism Model.

作者信息

Li Jiayi, Li Kexiang, Zhang Jianhua, Cao Jian

机构信息

School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China.

School of Mechanical and Materials Engineering, North China University of Technology, Beijing 100144, China.

出版信息

Bioengineering (Basel). 2023 Aug 31;10(9):1028. doi: 10.3390/bioengineering10091028.

Abstract

Estimation of continuous motion of human joints using surface electromyography (sEMG) signals has a critical part to play in intelligent rehabilitation. Traditional methods always use sEMG signals as inputs to build regression or biomechanical models to estimate continuous joint motion variables. However, it is challenging to accurately estimate continuous joint motion in new subjects due to the non-stationarity and individual differences in sEMG signals, which greatly limits the generalisability of the method. In this paper, a continuous motion estimation model for the human knee joint with a parameter self-updating mechanism based on the fusion of particle swarm optimization (PSO) and deep belief network (DBN) is proposed. According to the original sEMG signals of different subjects, the method adaptively optimized the parameters of the DBN model and completed the optimal reconstruction of signal feature structure in high-dimensional space to achieve the optimal estimation of continuous joint motion. Extensive experiments were conducted on knee joint motions. The results suggested that the average root mean square errors (RMSEs) of the proposed method were 9.42° and 7.36°, respectively, which was better than the results obtained by common neural networks. This finding lays a foundation for the human-robot interaction (HRI) of the exoskeleton robots based on the sEMG signals.

摘要

利用表面肌电图(sEMG)信号估计人体关节的连续运动在智能康复中起着关键作用。传统方法总是将sEMG信号作为输入来建立回归或生物力学模型,以估计连续的关节运动变量。然而,由于sEMG信号的非平稳性和个体差异,在新受试者中准确估计连续关节运动具有挑战性,这极大地限制了该方法的通用性。本文提出了一种基于粒子群优化(PSO)和深度信念网络(DBN)融合的具有参数自更新机制的人体膝关节连续运动估计模型。该方法根据不同受试者的原始sEMG信号,自适应优化DBN模型的参数,在高维空间中完成信号特征结构的最优重构,以实现对连续关节运动的最优估计。对膝关节运动进行了大量实验。结果表明,该方法的平均均方根误差(RMSE)分别为9.42°和7.36°,优于普通神经网络的结果。这一发现为基于sEMG信号的外骨骼机器人的人机交互(HRI)奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2a5/10525850/97eb879fd401/bioengineering-10-01028-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验