Suppr超能文献

基于海绵的微马达平台用于多循环大体积有机污染物的降解。

Micromotor-in-Sponge Platform for Multicycle Large-Volume Degradation of Organic Pollutants.

机构信息

Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri-Reixac 10-12, Barcelona, 08028, Spain.

Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys 23, Barcelona, 08010, Spain.

出版信息

Small. 2022 Jun;18(23):e2107619. doi: 10.1002/smll.202107619. Epub 2022 May 1.

Abstract

The presence of organic pollutants in the environment is a global threat to human health and ecosystems due to their bioaccumulation and long-term persistence. Hereby a micromotor-in-sponge concept is presented that aims not only at pollutant removal, but towards an efficient in situ degradation by exploiting the synergy between the sponge hydrophobic nature and the rapid pollutant degradation promoted by the cobalt-ferrite (CFO) micromotors embedded at the sponge's core. Such a platform allows the use of extremely low fuel concentration (0.13% H O ), as well as its reusability and easy recovery. Moreover, the authors demonstrate an efficient multicycle pollutant degradation and treatment of large volumes (1 L in 15 min) by using multiple sponges. Such a fast degradation process is due to the CFO bubble-propulsion motion mechanism, which induces both an enhanced fluid mixing within the sponge and an outward flow that allows a rapid fluid exchange. Also, the magnetic control of the system is demonstrated, guiding the sponge position during the degradation process. The micromotor-in-sponge configuration can be extrapolated to other catalytic micromotors, establishing an alternative platform for an easier implementation and recovery of micromotors in real environmental applications.

摘要

有机污染物在环境中的存在是对人类健康和生态系统的全球性威胁,因为它们具有生物累积性和长期持久性。为此,提出了一种微马达-海绵的概念,其目的不仅在于去除污染物,还在于利用海绵的疏水性和嵌入海绵核心的钴铁氧体 (CFO) 微马达促进的快速污染物降解之间的协同作用,实现有效的原位降解。该平台允许使用极低的燃料浓度(0.13%H2O),并且可重复使用和易于回收。此外,作者通过使用多个海绵,证明了高效的多循环污染物降解和处理大量污染物(15 分钟内 1 升)的能力。这种快速降解过程归因于 CFO 气泡推进运动机制,该机制在海绵内既引起增强的流体混合,又引起向外流动,从而允许快速的流体交换。此外,还证明了该系统的磁性控制,在降解过程中指导海绵的位置。微马达-海绵的配置可以推广到其他催化微马达,为在实际环境应用中更轻松地实施和回收微马达建立一个替代平台。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验