通过磁场诱导电荷分离提高光活性棒状纳米马达的效率

Boosting the Efficiency of Photoactive Rod-Shaped Nanomotors via Magnetic Field-Induced Charge Separation.

作者信息

Ferrer Campos Rebeca, Bakenecker Anna C, Chen Yufen, Spadaro Maria Chiara, Fraire Juan, Arbiol Jordi, Sánchez Samuel, Villa Katherine

机构信息

Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16, Tarragona E-43007, Spain.

Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel. lí Domingo 1, 43007 Tarragona, Spain.

出版信息

ACS Appl Mater Interfaces. 2024 Jun 12;16(23):30077-30087. doi: 10.1021/acsami.4c03905. Epub 2024 May 31.

Abstract

Photocatalytic nanomotors have attracted a lot of attention because of their unique capacity to simultaneously convert light and chemical energy into mechanical motion with a fast photoresponse. Recent discoveries demonstrate that the integration of optical and magnetic components within a single nanomotor platform offers novel advantages for precise motion control and enhanced photocatalytic performance. Despite these advancements, the impact of magnetic fields on energy transfer dynamics in photocatalytic nanomotors remains unexplored. Here, we introduce dual-responsive rod-like nanomotors, made of a TiO/NiFe heterojunction, able to (i) self-propel upon irradiation, (ii) align with the direction of an external magnetic field, and (iii) exhibit enhanced photocatalytic performance. Consequently, when combining light irradiation with a homogeneous magnetic field, these nanomotors exhibit increased velocities attributed to their improved photoactivity. As a proof-of-concept, we investigated the ability of these nanomotors to generate phenol, a valuable chemical feedstock, from benzene under combined optical and magnetic fields. Remarkably, the application of an external magnetic field led to a 100% increase in the photocatalytic phenol generation in comparison with light activation alone. By using various state-of-the-art techniques such as photoelectrochemistry, electrochemical impedance spectroscopy, photoluminescence, and electron paramagnetic resonance, we characterized the charge transfer between the semiconductor and the alloy component, revealing that the magnetic field significantly improved charge pair separation and enhanced hydroxyl radical generation. Consequently, our work provides valuable insights into the role of magnetic fields in the mechanisms of light-driven photocatalytic nanomotors for designing more effective light-driven nanodevices for selective oxidations.

摘要

光催化纳米马达因其独特的能力而备受关注,即能够将光和化学能同时快速光响应地转化为机械运动。最近的发现表明,在单个纳米马达平台中集成光学和磁性组件为精确运动控制和增强光催化性能提供了新的优势。尽管取得了这些进展,但磁场对光催化纳米马达中能量转移动力学的影响仍未得到探索。在此,我们介绍了由TiO/NiFe异质结制成的双响应棒状纳米马达,其能够(i)在光照下自行推进,(ii)与外部磁场方向对齐,以及(iii)展现出增强的光催化性能。因此,当将光照射与均匀磁场相结合时,这些纳米马达由于其改善的光活性而表现出更高的速度。作为概念验证,我们研究了这些纳米马达在组合光场和磁场下从苯生成苯酚(一种有价值的化学原料)的能力。值得注意的是,与仅光激活相比,外部磁场的应用导致光催化苯酚生成增加了100%。通过使用各种先进技术,如光电化学、电化学阻抗谱、光致发光和电子顺磁共振,我们表征了半导体与合金组分之间的电荷转移,揭示了磁场显著改善了电荷对分离并增强了羟基自由基的生成。因此,我们的工作为磁场在光驱动光催化纳米马达机制中的作用提供了有价值的见解,有助于设计更有效的用于选择性氧化的光驱动纳米器件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3883/11181276/5aca83041a09/am4c03905_0006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索