State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China.
MOA Key Laboratory of Soil Microbiology, and Rhizobium Research Center, China Agricultural University, Beijing, China.
mBio. 2022 Jun 28;13(3):e0372121. doi: 10.1128/mbio.03721-21. Epub 2022 May 2.
The rhizobium-legume symbiosis is essential for sustainable agriculture by reducing nitrogen fertilizer input, but its efficiency varies under fluctuating soil conditions and resources. The nitrogen-related phosphotransferase system (PTS) consisting of PtsP, PtsO, and PtsN is required for optimal nodulation and nitrogen fixation efficiency of the broad-host-range Sinorhizobium fredii CCBAU45436 associated with diverse legumes, though the underlying mechanisms remain elusive. This work characterizes the PtsN-KdpDE-KdpFABC pathway that contributes to low potassium adaptation and competitive nodulation of CCBAU45436. Among three PtsN, PtsN is the major functional homolog. The unphosphorylated PtsN binds the sensory kinase KdpD through a non-canonical interaction with the GAF domain of KdpD, while the region covering HisKA-HATPase domains mediates the interaction of KdpD with the response regulator KdpE. KdpE directly activates the operon encoding the conserved high-affinity potassium uptake system. Disruption of this signaling pathway leads to reduced nodule number, nodule occupancy, and low potassium adaptation ability, but without notable effects on rhizoplane colonization. The induction of key nodulation genes and in host roots during early symbiotic interactions is impaired when inoculating the mutant that shows delayed nodulation. The nodulation defect of the mutant can be rescued by supplying replete potassium. Potassium is actively consumed by both prokaryotes and eukaryotes, and components of the PTS-KdpDE-KdpFABC pathway are widely conserved in bacteria, highlighting the global importance of this pathway in bacteria-host interactions. In all ecological niches, potassium is actively consumed by diverse prokaryotes and their interacting eukaryote hosts. It is only just emerging that potassium is a key player in host-pathogen interactions, and the role of potassium in mutualistic interactions remains largely unknown. This work is focused on the mutualistic symbiosis between rhizobia and legumes. We report that the nitrogen-related phosphotransferase system PTS, the two-component system KdpDE, and the high-affinity potassium uptake system KdpFABC constitute a pathway that is important for low potassium adaptation and optimal nodulation of rhizobia. Given the widely conserved PTS, KdpDE, and KdpFABC in bacteria and increasing knowledge on microbiome for various niches, the PTS-KdpDE-KdpFABC pathway can be globally important in the biosphere.
根瘤菌-豆科植物共生对于可持续农业至关重要,因为它可以减少氮肥的投入,但在土壤条件和资源波动的情况下,其效率会有所不同。广泛宿主范围的中华根瘤菌 Sinorhizobium fredii CCBAU45436 与多种豆科植物相关联,其最佳结瘤和固氮效率需要由包含 PtsP、PtsO 和 PtsN 的氮相关磷酸转移酶系统(PTS)来完成,尽管其潜在机制仍不清楚。本工作描述了 PtsN-KdpDE-KdpFABC 途径,该途径有助于 CCBAU45436 适应低钾环境和进行竞争性结瘤。在三种 PtsN 中,PtsN 是主要的功能同源物。未磷酸化的 PtsN 通过与 KdpD 的 GAF 结构域的非典型相互作用与感觉激酶 KdpD 结合,而覆盖 HisKA-HATPase 结构域的区域则介导 KdpD 与响应调节子 KdpE 的相互作用。KdpE 直接激活编码保守高亲和力钾摄取系统的 操纵子。该信号通路的中断会导致结瘤数量、结瘤占有率和低钾适应能力降低,但对根际定殖没有明显影响。当接种表现出结瘤延迟的 突变体时,早期共生相互作用中宿主根中关键结瘤基因 和 的诱导受到损害。通过提供充足的钾可以挽救 突变体的结瘤缺陷。钾被原核生物和真核生物积极消耗,而 PTS-KdpDE-KdpFABC 途径的组成部分在细菌中广泛保守,这突显了该途径在细菌-宿主相互作用中的全球重要性。在所有生态位中,钾被各种原核生物及其相互作用的真核生物宿主积极消耗。现在才刚刚开始认识到钾是宿主-病原体相互作用中的关键参与者,而钾在互利共生相互作用中的作用在很大程度上仍然未知。本工作重点关注根瘤菌和豆科植物之间的互利共生关系。我们报告称,氮相关磷酸转移酶系统 PTS、双组分系统 KdpDE 和高亲和力钾摄取系统 KdpFABC 构成了一条途径,该途径对于根瘤菌的低钾适应和最佳结瘤至关重要。鉴于 PTS、KdpDE 和 KdpFABC 在细菌中的广泛保守性,以及对各种生态位微生物组的日益了解,PTS-KdpDE-KdpFABC 途径在整个生物圈中可能具有重要意义。